Socle 4eme

Textes Officiels à la rentrée 2020

Le programme de mathématiques est structuré selon cinq thèmes :

  1. nombres et calculs ;

  2. organisation et gestion de données, fonctions ;

  3. grandeurs et mesures ;

  4. espace et géométrie ;

  5. algorithmique et programmation qui entre dans le cadre d’un enseignement de l’informatique dispensé conjointement en mathématiques et en technologie.

Une place importante doit être accordée à la résolution de problèmes. Mais pour être en capacité de résoudre des problèmes, il faut à la fois prendre des initiatives, imaginer des pistes de solution et s’y engager sans s’égarer en procédant par analogie, en rattachant une situation particulière à une classe plus générale de problèmes, en identifiant une configuration géométrique ou la forme d’un nombre ou d’une expression algébrique adaptée. Ceci suppose de disposer d’automatismes (corpus de connaissances et de procédures automatisées immédiatement disponibles en mémoire). À la fin de l’explicitation des attendus de fin de cycle de chacun des quatre premiers thèmes du programme figure une liste de ces automatismes à développer par les élèves. L’acquisition de ces automatismes est favorisée par la mise en place d’activités rituelles, notamment de calcul (mental ou réfléchi), ayant pour double objectif la stabilisation et la pérennisation des connaissances, des procédures et des stratégies.

La formation au raisonnement et l’initiation à la démonstration sont des objectifs essentiels du cycle 4. Le raisonnement, au coeur de l'activité mathématique, doit prendre appui sur des situations variées (par exemple problèmes de nature arithmétique ou géométrique, mais également mise au point d’un programme qui doit tourner sur un ordinateur ou pratique de jeux pour lesquels il faut développer une stratégie gagnante, individuelle ou collective, ou maximiser ses chances).

Le programme du cycle 4 permet d’initier l’élève à différents types de raisonnement, le raisonnement déductif, mais aussi le raisonnement par disjonction de cas ou par l’absurde. La démonstration, forme d’argumentation propre aux mathématiques, vient compléter celles développées dans d’autres disciplines et contribue fortement à la formation de la personne et du citoyen (domaine 3 du socle). L’apprentissage de la démonstration doit se faire de manière progressive, à travers la pratique (individuelle, collective, ou par groupes), mais aussi par l’exemple. C’est pourquoi il est important que le cours de mathématiques ne se limite pas à l’application de recettes et de règles, mais permette de mettre en place quelques démonstrations accessibles aux élèves. De nombreux résultats figurant dans ce programme peuvent être démontrés en classe, selon des modalités variées : certaines démonstrations peuvent être élaborées et mises au point par les élèves eux-mêmes (de manière individuelle ou collective), sous la conduite plus ou moins forte du professeur ; d’autres, inaccessibles à la recherche des élèves, tireront leur profit des explications et des commentaires apportés par le professeur. Certaines démonstrations possibles (aussi bien sur les nombres et le calcul qu’en géométrie) sont identifiées dans le programme. Les enseignants ont la liberté de choisir ceux des résultats qu’ils souhaitent démontrer ou faire démontrer, en fonction du niveau et des besoins de leurs élèves. Enfin, il vaut mieux déclarer « admise » une propriété non démontrée dans le cours (qui pourra d’ailleurs l’être ultérieurement), plutôt que de la présenter comme une « règle ». Une propriété admise gagne à être explicitée, commentée, illustrée.

En complément, dans le cadre du travail personnel soumis aux élèves, beaucoup d’exercices et de problèmes peuvent servir de support à la démonstration. De manière à encourager les élèves dans l’exercice de la démonstration, il est important de ménager une progressivité dans l’apprentissage de la recherche de preuve et de ne pas avoir trop d’exigences concernant le formalisme.

Repères de progressivité

  • Les Nombres décimaux

Le produit et le quotient de décimaux relatifs sont abordés.


  • Les fractions et nombres rationnels

Un nombre rationnel est défini comme quotient d’un entier relatif par un entier relatif non nul, ce qui renvoie à la notion de fraction. Le quotient de deux nombres décimaux peut ne pas être un nombre décimal. La notion d’inverse est introduite, les opérations entre fractions sont étendues à la multiplication et la division. Les élèves sont conduits à comparer des nombres rationnels, à en utiliser différentes représentations et à passer de l’une à l’autre. Une ou plusieurs démonstrations de calculs fractionnaires sont présentées. Le recours au calcul littéral vient compléter pour tout ou partie des élèves l’utilisation d’exemples à valeurs génériques.


  • Racine carré

La racine carrée est introduite, en lien avec des situations géométriques (théorème de Pythagore, agrandissement des aires) et à l’appui de la connaissance des carrés parfaits de 1 à 144 et de l’utilisation de la calculatrice.


  • Puissance

Les puissances de 10 sont d’abord introduites avec des exposants positifs, puis négatifs, afin de définir les préfixes de nano à giga et la notation scientifique. Celle-ci est utilisée pour comparer des nombres et déterminer des ordres de grandeurs, en lien d’autres disciplines. Les puissances de base quelconque d’exposants positifs sont introduites pour simplifier l’écriture de produits. La connaissance des formules générales sur les produits ou quotients de puissances de 10 n’est pas un attendu du programme : la mise en oeuvre des calculs sur les puissances découle de leur définition.


  • Divisibilité et nombres premiers

Les élèves déterminent la liste des nombres premiers inférieurs ou égaux à 100 et l’utilisent pour décomposer des nombres en facteurs premiers, reconnaître et produire des fractions égales, simplifier des fractions.


  • Les expression littérales

Le travail sur les formules est poursuivi, parallèlement à la présentation de la notion d’identité (égalité vraie pour toute valeur des indéterminées). La notion de solution d’une équation est formalisée.


  • La Distributivité

La structure d’une expression littérale (somme ou produit) est étudiée. La propriété de distributivité simple est formalisée et est utilisée pour développer un produit, factoriser une somme, réduire une expression littérale.


  • Les équations

Les notions d’inconnue et de solution d’une équation sont abordées. Elles permettent d’aborder la mise en équation d’un problème et la résolution algébrique d’une équation du premier degré. Les équations sont travaillées tout au long de l’année par un choix progressif des coefficients de l’équation.


  • Les statistiques

Un nouvel indicateur de position est introduit : la médiane. Le travail sur les représentations graphiques, le calcul, en particulier celui des effectifs et des fréquences, et l’interprétation des indicateurs de position est poursuivi.


  • Les Probabilités

Les calculs de probabilités concernent des situations simples, mais ne relevant pas nécessairement du modèle équiprobable. Le lien est fait entre les probabilités de deux événements contraires.


  • La Proportionnalité

Le calcul d’une quatrième proportionnelle est systématisé et les points de vue se diversifient avec l’utilisation de représentations graphiques, du calcul littéral et de problèmes de géométrie relevant de la proportionnalité (configuration de Thalès dans le cas des triangles emboîtés, agrandissement et réduction).


  • Les fonctions

La dépendance de deux grandeurs est traduite par un tableau de valeurs, une formule, un graphique. Les représentations graphiques permettent de déterminer des images et des antécédents, qui sont interprétés en fonction du contexte. La notation et le vocabulaire fonctionnels ne sont pas formalisés en 4e.


  • Calculer des grandeurs mesurables

Le lexique des formules s’étend au volume des pyramides et du cône. Le lien est fait entre le volume d’une pyramide (respectivement d’un cône) et celui du prisme droit (respectivement du cylindre) construit sur sa base et ayant même hauteur. Des grandeurs produits (par exemple trafic, énergie) et des grandeurs quotients (par exemple vitesse, débit, concentration, masse volumique) sont introduites à travers la résolution de problèmes. Les conversions d’unités sont travaillées. Les élèves sont sensibilisés au contrôle de la cohérence des résultats du point de vue des unités des grandeurs composées.


  • Effets des transformations sur des grandeurs géométriques

Les élèves connaissent et utilisent l’effet d’un agrandissement ou d’une réduction sur les longueurs, les aires et les volumes. Ils le travaillent en lien avec la proportionnalité.


  • Représenter l'espace

Le repérage se fait dans un pavé droit (abscisse, ordonnée, altitude). Les élèves produisent et mettent en relation une représentation en perspective cavalière et un patron d’une pyramide ou d’un cône.


  • Figures planes et Configurations

Les cas d’égalité des triangles sont présentés et utilisés pour résoudre des problèmes. Le lien est fait avec la construction d’un triangle de mesures données (trois longueurs, une longueur et deux angles, deux longueurs et un angle). Le théorème de Thalès et sa réciproque dans la configuration des triangles emboîtés sont énoncés et utilisés, ainsi que le théorème de Pythagore (plusieurs démonstrations possibles) et sa réciproque. La définition du cosinus d’un angle d’un triangle rectangle découle, grâce au théorème de Thalès, de l’indépendance du rapport des longueurs le définissant. Une progressivité dans l’apprentissage de la recherche de preuve est aménagée, de manière à encourager les élèves dans l’exercice de la démonstration. Aucun formalisme excessif n’est exigé dans la rédaction.


  • Les Transformations du plan

Les élèves sont amenés à transformer (à la main ou à l’aide d’un logiciel) une figure par translation. Ils identifient des translations dans des frises ou des pavages ; le lien est alors fait entre translation et parallélogramme. La définition ponctuelle d’une translation ne figure pas au programme. Toutefois, par commodité, la translation transformant le point A en le point B pourra être nommée « translation de vecteur ⃗𝐴⃗⃗⃗𝐵⃗ », mais aucune connaissance n’est attendue sur l’objet « vecteur ».


  • Écrire, mettre au point et exécuter un programme

À un deuxième niveau, les connaissances et les compétences en algorithmique et en programmation s’élargissent par :l’écriture d’une séquence d’instructions (condition « si … alors » et boucle « répéter … fois ») ; l’écriture de programmes déclenchés par des événements extérieurs ; l’intégration d’une variable dans un programme de déplacement, de construction géométrique, de calcul ou de simulation d’une expérience aléatoire.