. CASE FOR MOON FIRST - 02 Executive summary

==

EXECUTIVE SUMMARY

Skip to contents list. (Most of the links in this section take you to appropriate sections of this booklet)

If you prefer to listen to it, here I am reading out the executive summary:

(click to watch on Youtube)

==

YOUTUBE VIDEO

Case for Moon - Executive Summary

528 views

•May 21, 2016

60SHARESAVE

Mars and Space Colonization

SUBSCRIBE

Subtitle: Positive Future For Humans In Space - Open Ended With Planetary Protection at its Heart. You can read the full booklet here: http://robertinventor.com/booklets/On... The kindle book is here: https://www.amazon.com/Case-Moon-Posi... The spaceshow page for my guest appearance on Friday 27th May is here: http://www.thespaceshow.com/show/27-m... My blog on Science20 is here http://www.science20.com/robertinventor (though note, the "Case for Moon pages there are a bit out of date just now - with three pages to update, each differently formatted - the online free book gets updated first, then the Kindle book, and from time to time I update the Science20 blog post which is last for techy reasons). The Case for Moon facebook group is here: https://www.facebook.com/groups/47372...

09:34

https://www.youtube.com/watch?v=6XixaUa6UIA&feature=youtu.be

==

The Moon is our nearest unexplored territory outside Earth. To ignore it is like ignoring Antarctica after the first few landings in the nineteenth century. Why rush humans as quickly as possible to distant Mars, the one place in the inner solar system most vulnerable to Earth microbes?

  • The Moon is resource rich, with volatiles at the poles, possibly hundreds of millions or a billion tons of them, with water, ammonia and carbon dioxide. It has many metals and nanophase pure iron in the regolith, also easily made into glass. It has a high grade vacuum for chip manufacture.

  • It has many advantages for a human base, including the peaks of (almost) eternal light, and possibly enormous lunar caves.

  • It is of great interest for science, with many new discoveries to be made.

  • It is far safer than Mars as a first destination for humans.

  • There are many places other than Mars to settle and perhaps colonize.

  • We don't know which gravity levels humans need for health, or what spin rates we can tolerate. You can’t draw a straight line between the effects of zero g and full g based on two data points.

  • Everything humans need in space is available in the asteroid belt, sufficient to build full g spinning habitats with a thousand times the land area of Earth.

  • Terraforming Mars is a far off dream. We are not yet mature enough as a civilization to see this thousands of years long megatechnology project through to completion. Failed attempts would introduce new lifeforms to Mars which may get in the way of future goals.

  • Earth is the best place for a backup and to rebuild civilization. We live in a quiet galactic region, at a quiet time in our solar system. None of the proposed disasters could make Earth as uninhabitable as Mars, leaving Earth as the best place to rebuild. While if our technology is the problem, surely the solution can't be to set up one of the most highly technological societies ever, in space.

  • As a young technological civilization, we should have protection and sustenance of our home planet as first priority, A trillions of dollars megatechnology “backup” attempt could distract from this. We can use our space technology to protect Earth against asteroids, to move damaging mining operations into space, for solar power, and for scientific discovery.

  • Mars has much more potential for surface and near surface habitats for indigenous life than realized before. These habitats could host lifeforms that are vulnerable, for instance early life based on RNA and ribozymes instead of ribosomes, out evolved on Earth by DNA based life.

  • We have protection guidelines on Earth to stop microbial contamination of vulnerable habitats such as lake Vostok (an isolated lake below 3.5 kilometers of ice in Antarctica). Humans would not be permitted to descend into this lake at present.

  • Mars can be explored from orbit more effectively than from the surface, using telerobotics.

  • Humans in clumsy spacesuits don't have special advantages over telerobots on the Mars surface

  • From orbit, you can “teleport” via telepresence to anywhere on Mars with immersive virtual reality experience of the surface.

  • We have miniaturized life detection instruments on a chip, that just a decade ago filled an entire laboratory

    • "If such capabilities were to become available, one advantage is that the experiment would not be limited by the small amount of material that a Mars sample return mission would provide. What is more, with the use of rovers, an in situ experiment could be conducted over a wide range of locations." (Page 41 of Safe on Mars)

    • These are now the most effective way to search for Mars life, past and present (as eight exobiologists said in a white paper for the decadal review). With our recent complex understanding of Mars processes, a sample return will not prove that Mars is safe for humans, or that humans are safe for Mars. Find out more

  • We should return samples from Mars either sterilized or to above GEO, or both, at least for preliminary investigation. It is far easier, both physically and legally, to return them to Earth after we know what is in them. Otherwise we are left with the daunting task to design for safe handling of any conceivable Mars exobiology, based only on knowledge of DNA based life.

  • If we show that human exploration of the Moon is of value to Earth, this will help human exploration of the rest of the solar system, not hinder it.

  • The same open ended principle should be used for all our explorations in space . Rather than grand overarching plans - we need an open step by step approach. At each stage we learn from what we have found so far, and can adapt and change our goals rapidly.

  • Until we know a lot more than we do now, we should not close off future possibilities for ourselves, our descendants and all future civilizations on Earth, but should keep all options open.

  • In this approach, planetary protection and biological reversibility are core principles.

The Moon in this vision is a gateway to the solar system, a place to develop new techniques and explore a celestial body that is proving much more interesting than expected. Along the way, we are bound to get human outposts in space, and colonization may happen also.

However, settlement in space doesn't need to be the driving force, any more than it is the driving force behind the study and exploration of Antarctica. If we try to turn Mars and other places in space into the closest possible imitations of Earth as quickly as possible, this may close off other futures, like the discovery of vulnerable early life on Mars, or better future ways to transform Mars.

Once we develop the ability to live in space for years at a time, the whole solar system will open out to us. While keeping future options open on Mars we can explore Venus, Mercury, asteroids, Jupiter's Callisto and further afield, and Mars itself via telepresence. We also have many experiments in human settlement to try closer to hand on the Moon. This can be an exciting future, with humans working together with robots for remote exploration, as our mobile sense organs and hands in the solar system and galaxy.

SEARCH FOR INSPIRATION

If you are keen on Mars colonization, it is not hard to find a future vision to inspire you. Elon Musk has plans to send a hundred people at a time in his proposed "Mars Colonial Transporter" and to found a city of 80,000, and eventually a million. He is due to reveal these plans at the IAC conference this September. And NASA, though they don't have such a large scale vision, aim to land human boots on Mars, with an eye to permanent Mars settlement in the future. You can also join the Mars society and read the books of Robert Zubrin.

But what if you are keen on humans in space, but don't think we have any realistic chance of colonizing the planet? What if you love science, and think "boots on Mars" has significant planetary protection issues? What can your future vision be? You have to go back perhaps to O'Neil's "Colonies in Space" vision of the 1970s to find an alternative that has the same level of positive inspiration as this Mars colonization idea.

This book presents a gradually evolving alternative that I think can be a positive future inspiration, based on the Moon as our next place to visit and start permanent settlement rather than Mars. Although it builds on the detailed plans of "Moon firsters", such as Paul Spudis, Dennis Wingo, Madhu Thangavelu and David Schrunk, this vision is perhaps more open ended, with new goals that we discover along the way, and has planetary protection as a core principle, indeed as one of the many reasons for focusing on the Moon before Mars, and Mars exploration from orbit before we consider sending humans to the surface.

ESA image from blog post: Lunar Surprises - ESA rocket science blog

WHO THIS IS FOR

Are you keen on humans in space, but think Mars could be a step too far right now? Do you think we are bound to need to support our space settlements from Earth for a fair while into the future, just as we do for inhospitable places such as Antarctica? Do you think our exploration should be open ended with science as a core objective, and planetary protection and reversible biological exploration as core principles?

Do you see the Moon as an exciting first place to visit and explore, and see robots as our mobile sense organs in the solar system? Do you think that it's not quite yet the right time to relax planetary protection guidelines, and don't want to make Mars more vulnerable to Earth life?

Then this may be a vision for you. And if not, well I think you may still find much here of interest and perhaps may get many surprises.

LUNAR VILLAGE

This is the ESA video about ideas for small robotic missions first, followed by Antarctic base type settlements on the peaks of (almost) eternal light at the lunar poles.

(click to watch on Youtube)

==

YOUTUBE VIDEO

Destination: Moon

185,298 views

•Jan 19, 2015

2.8K40SHARESAVE

European Space Agency, ESA

521K subscribers

SUBSCRIBE

This 8-minute film gives an overview of the past, present, and future of Moon exploration, from the Lunar cataclysm to ESA’s vision of what Lunar exploration could be. Why is the Moon important for science? What resources does the Moon have? Is there water? Why should we go back and how will we do it?

08:32

https://www.youtube.com/watch?v=Xe_nuRMH30c&feature=youtu.be

==

I use ESA as my main example here and throughout this book, because they seem to have the most developed ideas for a Moon base of any of the space agencies currently. What's more, they are actively pursuing their idea of a moon village, with a reasonable chance of success, since it's based on many established international partnerships.

That includes their partnership with Russia. Then, though currently NASA say that they won't send any astronauts to the lunar surface, they are open to partnerships in other ways. ESA are already committed to partner with the US in their Exploration Mission 1 / 2 to enter a distant retrograde orbit around the Moon, and they can also partner with India, Japan, and even China, which I think adds to their chances of success.

They are also open to partnership with commercial space and private ventures as well as government space agencies. Of course we could get many surprises in the future, for instance who can tell whether the next president of the US might change direction again and decide to go "back to the Moon", but on the basis of the situation as of writing this, I'd bet on ESA as the most likely to set up a Moon colony, if I was a betting man.

This is the ESA director general Jan Woerner talking about his ideas.

(click to watch on Youtube)

==

YOUTUBE VIDEO

ESA DG Moon Village IAF Spring Meetings 2016

2,243 views

•Apr 26, 2016

290SHARESAVE

International Astronautical Federation

41:48

https://www.youtube.com/watch?v=b042E3pwS8o&feature=youtu.be

==

;color:black'>SUBSCRIBE

This 8-minute film gives an overview of the past, present, and future of Moon exploration, from the Lunar cataclysm to ESA’s vision of what Lunar exploration could be. Why is the Moon important for science? What resources does the Moon have? Is there water? Why should we go back and how will we do it?

08:32

https://www.youtube.com/watch?v=Xe_nuRMH30c&feature=youtu.be

==

This is their plan for the base itself

(more background)

And this is how they would build the base with 3D printers on the Moon

Adding regolith shielding to one of the habitats (using robots controlled telerobotically from Earth). Photograph ESA / Foster + Partners.

For techy details see: Lunar Outpost Design, 3D printing regolith as a construction technique for environmental shielding on the moon

For more about the advantages of this village idea, see also the section below: How an international lunar village saves money, and is safer than separate bases spread out over the Moon, through use of communal resources

In the process we will find out what humans do best, and what robots do best, starting off with robots first, and then humans on the Moon. Then we can continue outwards in an open fashion, building on what we've learnt.

Meanwhile, we continue to explore Mars robotically from Earth, as well as many other interesting places in our solar system, including Venus, Mercury, Europa, Enceladus, Titan, comets, asteroids and so on. Later, once we have the capability, we can send humans to explore Mars telerobotically, perhaps first though "free return" flyby missions, then from orbit, then perhaps explore Mars from bases on its two moons Phobos and Deimos, and explore its moons themselves. These would be only some of many future human based missions, eventually spanning the entire solar system.

In this approach, science and planetary protection is central. Space settlement happens because you are there for a purpose. As with the Antarctic bases - once we are there with good science as the motivation, it would naturally become a permanent outpost and a first step into space.

Missions motivated by science continue to grow, and engage the public. There is no suggestion that we should stop exploring Antarctica because of the cost of doing science there. What's more, scientifically motivated missions can have overwhelmingly positive outcomes too, especially if we make new discoveries about biology and evolution.

However it's not enough to just say this. We need to try to provide a much more detailed vision. It needs to address the idea that Mars is the obvious next place to go, and somehow provide an alternative vision that is as compelling as that to the human imagination. That's quite a tough task.

SCEPTICISM ABOUT A VIABLE COLONY IN A COLD DESERT WITH A NEAR VACUUM FOR AN "ATMOSPHERE"

If you don't think we have a realistic chance of colonizing Mars, you can present your reasons for skepticism to colonization enthusiasts. You can say that it is sure to be much harder to live on Mars than to set up home in Antarctica, the Atacama desert, or the top of Mount Everest. You can point out that Mars is currently far more like the Moon than it is like Earth in terms of habitability, with its laboratory vacuum for an atmosphere (similar to Earth's atmosphere at 30 kilometers upwards), hard radiation, and extremes of cold.

You can mention that (though it can get warm in the daytime), it gets so cold at night that carbon dioxide freezes out in dry ice / water ice frosts for 200 nights of the year even at the equator. You can point to the additional issues of the global dust storms that can sometimes blank out the sun for weeks on end, and harmful perchlorates in the dust.

I think everyone agrees with all those points. The difference is that prospective colonists see them all as challenges to be overcome, rather than as reasons not to colonize the place. They will point you in the direction of Robert Zubrin's books explaining how it would be done.

You can go on to ask, would that really work as a place where a million people, or even a thousand people could live and be self sufficient without constant expensive resupply from Earth? Would we really colonize the near vacuum extreme conditions of Mars, when we don't even colonize deserts on Earth? However, a keen Mars colonization enthusiast will answer "Yes!" emphatically. Somehow all these problems will be solved, they say, and we will have colonies on Mars.

WHAT IF THE MOON HAD BLUE SKIES? ONE SMALL CHANGE TO APOLLO PHOTOS

I found, when writing this book , that the Moon is resource rich, and often beats Mars in habitability comparisons. Yet photos of Mars released to the press look so much more Earth-like, because of the brightening of the landscape and boosting of blue in the scene (white balancing) done to help geologists read the rocks. Many of them even have blue skies instead of the grayish brown skies natural to Mars.

So, what if we did the same with photos of the Moon, gave it blue skies too, like many of the Mars press photos? It's easy to do because the surface is already lit up just as it would be for a sunny day on Earth. We don't need to do anything else, just colour the sky blue instead of black, and it looks Earth-like already. I was amazed at what a difference such a simple change makes to the feel of the scene. You can read it as if illuminated on a sunny day, which is indeed what it was like for the Apollo astronauts.

So, here they are. These images are not altered in any way. All I've done is to crop them, and replace the black skies with photographs of blue skies and clouds from Earth.

Original here Apollo 17 at Shorty Crater - blue sky from here

Original here, sky from here

Original here, sky from here

For more examples, see my article: What If The Moon Had Blue Skies? One Small Change To Apollo Photos

It suddenly looks much more Earth-like. Yet it's a vacuum there. The thing is that of course it was a sunny day for the astronauts - you tend to forget when you see the black sky. On Earth some of the light comes to the landscape from the sun and some reaches us indirectly from the blue sky and the clouds.

On the Moon, much of the light comes from the sun, but a lot of light also comes indirectly from the landscape itself. That's why you can see detail in the shadows, and why they aren't completely black on the Moon. So - it's not quite so surprising as you'd think, but fun.

You can make the photos look even more like Earth by reducing the contrast - shadows are not quite so contrasty on Earth. I tried that and it worked. You could also fuzz the edges of the shadows as they are never so sharp edged on Earth, and you'd need to do something about the black sky reflected in astronaut's helmets. However I'm not trying to simulate an Earth illumination on the Moon. I don't have the skills anyway, there are graphics designers, artists, 3D modelers etc who could do a much better job.

But that wasn't my aim here. The aim was to show how the Moon is as Earth like as Mars in photographs, and indeed more so, with minimal processing, not even the white balancing they use for Mars photos. So to do additional processing to make it look more Earth like would rather defeat the point in the article. Perhaps others will do that in the future.

It's similar on the Mars surface, it is nearly as much of a vacuum as the Moon as far as humans are concerned. The moisture lining your lungs would boil there. Mars is not really significantly more "Earth like" than the Moon, I think.

This is a colour enhanced Mars image as you would see it in most press photos - enhanced for the purposes of geologists, so that the rocks look like the same types of rocks under Earth illumination. There are two ways to do this. The most common method is white balancing which takes the brightest patch in the scene, and adjusts it in brightness and hue until it is white. The other method, occasionally used, is natural colour which uses a calibration based on photographs of a colour swatch on Curiosity that was previously photographed on Earth.

This is what Mars would look like to a typical smartphone camera, the raw image from Curiosity (both these photos are of Mount Sharp)

Photos from here

I think the Moon would be a more interesting landscape to a human eye. Much brighter - which tends to make humans feel cheerful. While the sunlight on Mars at its brightest is half the illumination of Earth, and as well, it's a dull brown in colour with the Mars dust suspending in the air filtering out the blue. It has no blue sky except around the sun at sunset. Also there is very little variation in colour in the landscape. It's mainly dull grayish browns, with no blue and none of the bright glints catching the sunlight we have on Earth. I think that any Mars colonists would have a tendency towards depression just because of the rather gloomy sky and dull coloured landscape.

EARTH BEST FOR A "BACKUP"

I'll go into other aspects of this later on, but perhaps we should address this right away as it's become the top reason to attempt to colonize Mars for many people. Elon Musk has been promoting it strongly. Stephen Hawking has also said this is an important reason to go multiplanetary. In this account of an interview with Elon Musk, the author Ross Anderson presents it as:

"A billion years will give us four more orbits of the Milky Way galaxy, any one of which could bring us into collision with another star, or a supernova shockwave, or the incinerating beam of a gamma ray burst. We could swing into the path of a rogue planet, one of the billions that roam our galaxy darkly, like cosmic wrecking balls. Planet Earth could be edging up to the end of an unusually fortunate run."

But there are no figures here. So let's supply them. Calculation indented, and coloured dark red, to make it easy to skip:

There's a formula, we can use here, from Perturbation of the Oort Cloud by Close Stellar Approaches. Our sun has approximately 4.2×D2 encounters with other stars every million years where D is the diameter in parsecs of the region. Neptune's semi major axis is 4.49506 billion kilometers so the diameter of its orbit is around 0.00029135 parsecs. So, using that formula, every million years there is 1 chance in 1/(4.2×0.00029132) of a star passing closer to the sun than Neptune.

That makes it about one chance in 2.8 million of a star passing closer to the sun than Neptune every million years. There may be twice as many rogue planets as stars, so that means one chance in 1.4 million of one of those passing closer to the sun than Neptune in the same time period. Neutron stars are even more unlikely. So we don't need to worry about any of these on the thousands of years timescale. The chances is less than one in a billion in the next thousand years that another star gets as close as Neptune.

Gamma ray bursts are possible also, but would not make humans extinct, even if very close. Our atmosphere completely shields us from gamma rays, which is why gamma ray telescopes have to be flown in space. We can only see gamma ray bursts at all with space observatories. The main effect is on the upper atmosphere and particularly the ozone layer. There was a theory at one point that this could through various interactions lead to increased nitrous oxide levels which could then lead to elevated ozone layers at ground level and so cause extinctions. However that theory has been shown to be false by more detailed modeling. Research announcement from NASA here: How Deadly Would a Nearby Gamma Ray Burst Be? Paper itself is here.

The gamma ray burst not only reduces the amount of ozone in the upper atmosphere. It also creates ozone depleting nitrogen oxides. They took the example of a gamma ray burst which hits the south pole most severely, as that has down drafts of air constantly. Those would bring the nitrogen oxides down to the lower atmosphere which is why you see the red regions descending with time. This causes a series of pulses of ozone depletion in the upper atmosphere which then leads to increases of ozone at sea level as the red regions let more UV through to the lower atmosphere. The model assumed a 100kJ/m2 burst from the direction of the South Pole, for a gamma ray burst within a few thousand light years of Earth (that’s very close compared to the diameter of the galaxy of 100,000 light years).

So could this raise the ozone levels enough to be harmful to life? The answer from this study was no. A very nearby gamma ray bursts could raise the ozone levels at ground level temporarily to 10 ppm. To be harmful to animal life it would need to reach 30 ppm. It is also not enough to be harmful to ocean life. Even if all the ozone created at ground level got absorbed in the sea, it would not be enough to be harmful to ocean life. So this disproves the hypothesis that a gamma ray burst could be the cause of the late Ordovician mass-extinction.

The idea that gamma ray bursts could cause extinctions at all, on any scale, is now not easy to establish. The main effect would be elevated levels of UV for a number of years. At any rate, if perhaps some other species were affected, they would not make humans extinct. Also the young Wolf Rayet stars which are gamma ray burst candidates are rare and of the hundred or so known, only one seems to be pointing our way. That's WR104, 8,000 light years away.

It looks as if it is facing us nearly face on. But spectroscopic observations of the star suggest it’s axis is at an angle of 30° - 40° (possibly as much as 45°) which would mean it would miss. See WR 104 Won't Kill Us After All - Universe Today

For more details see my Debunked: A gamma ray burst could make humans extinct

It's the same also for a nearby supernova. They are short, violent events, and again we are protected by our atmosphere from the worst effects, equivalent to ten meters depth of water in mass above us. See What’s a safe distance between us and an exploding star? And for more details, the paper here: Could a nearby supernova explosion have caused a mass extinction? They find that a supernova within 32 light years (ten parsecs), which should happen every few hundred million years would not heat up Earth significantly, would not be bright enough to harm the ecology through the light alone. In the year after the event you’d get as much ionizing radiation as you get normally in between a decade and a century. So the increase in ground level ionizing radiation is significant but it doesn’t seem to be enough to be devastating.

Also, are there any nearby supernova candidates? We can't predict when a star will go supernova exactly, but the only stars that can go supernova are ones that are at a particular stage in their life, and they have to be massive too, for Type II supernovae, and for type Ia it needs a white dwarf companion. Our sun can't go supernova at all, it's too light.

The Type II supernova candidates are easiest to see, bright massive stars, larger than our sun, which collapse to a neutron star or black hole at the end of their lifetime. Betelgeuse will explode some day, and we know this for sure. It could be today, but much more likely to be a long time into the future. It could be a million years from now. But it is far too far away to be any problem for Earth, nor is it close enough to be a second sun in our sky. It will just be a very bright star for us. It will be an interesting sight for astronomers, as a great chance to study a supernova close up. For everyone else, just a very bright star. Briefly, the brightest star in the sky. Betelgeuse will explode someday. Eta Carinae is another star that can go supernova. It’s a “blue supergiant” - which shows it’s not just red giants that can go supernova. This is a very young, super hot star 8,000 light years away and it may explode in the next few hundred thousand years. It’s also far to far away to harm us.

The other type of supernova is a Type Ia supernova (with some variations on it). A red giant star dumps gas on a white dwarf companion. These used to be the "dark horses" which we couldn't detect easily, leaving the possibility that there might be a nearby one that would cause problems. But with all the modern sky surveys, we now know that there are no nearby candidates for a type Ia supernova either. The closest is IK Pegasi which at 150 light years away is far too far away to harm us. It’s moving away from us and the scientists think it won’t go supernova for several million years, by which time it will be perhaps 500 light years away. It would need to be within 30 light years to be harmful. There are type Ib and type Ic supernovae too, These happen when a star loses its outer envelope, for instance to a companion star - and then the naked core collapses. Type Ib and Ic supernovae. But there are none of those nearby either.

Here is a list of the nearby List of supernova candidates See also: The closest supernova candidate? - Bad Astronomy So, though a nearby supernova within 30 light years could harm our ozone layer, right now there are no candidate stars that could go supernova, that are close enough to harm us. We get supernovas quite often and they leave rather beautiful remnants. Roughly once a century, though many are so obscured by dust and gas that they can't be seen with the naked eye from Earth. For instance Cassiopeia A which was recorded in the mid seventeenth century as very faint sixth magnitude star by John Flamstead on August 16 1680, he didn’t know what it was. For more details see my Debunked: Earth is threatened by a supernova

For those that worry about such things, I'd like to just add, that both of these are extremely unlikely events, and there are no known stars likely to go supernova close enough to be a hazard right now. The next supernova is most likely to be thousands of light years away, since we can spot them so far away. They are rare events that happen occasionally in an entire galaxy, and can be seen from an immense distance, and are most often spotted in distant galaxies as well.

The important thing is, that none of these would make Earth less habitable than Mars. It would still have its oceans, its oxygen rich atmosphere, its protection from cosmic radiation, its land, its plants and surely fish and shellfish and animals also.

Even after the extinction of the dinosaurs, birds, dawn sequoia, river turtles, small mammals and many other plants and creatures survived. Many species would go extinct after a gamma ray burst or a large asteroid impact, but humans are great survivors and can survive anywhere from the cold Arctic to the hot and dry Kalahari desert, with only neolithic technology. So some of us, surely, would survive. And there is no realistic chance of a significantly larger asteroid, as there are no impact craters that large anywhere from Mars inwards dating from later than 3 billion years ago.

If your "backup" is on Mars, then after something devastating happens, obviously you'll have rebuilding Earth as your top priority, as it is going to be far easier to restore Earth than to attempt to terraform Mars. So you've got your backup in the wrong place, six months travel by space from the place you will need to help rebuild.

You could do a much simpler backup, if you think it's necessary, by simply setting up your Mars base on Earth, in three different locations, say, in order to make sure they aren't all destroyed at once. Most of the technology you need for Mars is not even required. By putting your backups on Earth, the inhabitants don't need to worry about the need to maintain a breathable atmosphere, and can go outside and repair their habitats without spacesuits, and don't need to cover the habitats with meters of regolith to protect from cosmic radiation and solar storms. It would cost only a fraction of the cost of a Mars facility to set up such facilities on Earth, and the facilities. Even if they go everywhere in biocontainment suits, it's far easier than using spacesuits. And In Situ Resource Utilization is obviously going to be far easier on Earth no matter how devastated, than on Mars.

So, it just doesn't seem to add up. Extinctions are happening, and will surely continue, many of them human caused. But humans themselves going extinct? I can't see it. And surely the Martian colonist, so highly dependent on technology, would be the most vulnerable of us all if we somehow have a breakup of society and lose our ability to use technology? I don't see that happening anyway, but if it did, why would it be restricted to Earth, and Mars be immune? Without modern technology they would have no chance at all on Mars.

That is, unless we go extinct through misuse of technology. Nick Bostrom is a philosopher who thinks we have a high risk of going extinct from use of our own technology, perhaps as high as 25%. But that's partly because he is one of those who think the "singularity" is a possible future scenario, complete with mind uploading and boot strapping super intelligences who might take over the world. He also thinks that we might be living in a simulation which gets switched off. Elon Musk also thinks those are possible, as you can tell from the interview. Myself, I think those are both science fiction scenarios that probably don't correspond to anything in reality. In any case both of those scenarios would impact both Mars and Earth equally.

I see the greatest potential risks as from synthetic biology, for instance experiments to modify living cells to use something else in place of DNA, or from return of an extraterrestrial biology to Earth. See my Could Anything Make Humans Extinct In The Near Future? for the reasoning there.

In any case, if the main risk of extinction is from our own technology, then how can the solution be to set up a new society in space that is more dependent on technology than any other society that there's ever been? The Martian colonists could well be the ones that create the devastating technology in the first place, if such is possible at all. This could even increase the risk, by deflecting attention and money away from preserving Earth, and if done rapidly, even by causing conflict situations in space too. A war between space colonies would surely end quickly with nearly everyone dead, with such powerful technology and fragile habitats.

And as for quarantine ideas - if it is quarantine that is the safety net, it would be easy to set up our "backups" on Earth with quarantine periods. And the six months voyage to Mars would surely get shorter, weeks, maybe even go down to days eventually, as transport gets better.

Examples of fast ways to get to Mars currently in development: the Russians are working on a nuclear rocket that could get us to Mars in six weeks. The Z-pinch fusion idea would also get us there in about six weeks. Then there's the VASIMIR plasma rocket, which its inventors say could cut the journey time to Mars down to 39 days.

There's the photonic propulsion idea as well, which they say could take light spacecraft to Mars in three days and take humans to Mars in a month.

If you look at what is theoretically possible if we had a drive able to accelerate at full gravity (perhaps with photonic propulsion), then you could traverse half the distance to Mars at opposition of roughly 60 to 100 million kilometers or so, take its most distant opposition, in sqrt((50 million×1000)/5) seconds or 100,000 seconds, or about 1.16 days.

So you'd take a little over two days to get to Mars at a comfortable one g acceleration and deceleration.

So we can't rely on the distance to Mars for quarantine. Anyway, if it's a disease spread naturally, then if it is too virulent it doesn't spread far. It's not in the interest of a disease to kill its host, especially quickly. As a result there's usually some natural immunity. Even the great plague didn't kill everyone. The diseases also needs some way to get transmitted, for instance through sneezing, carried by rats (as in the case of the great plague) or whatever. It's surely very unlikely that some plague like that would kill everyone on Earth without exception.

It is possible if something else reduces our population to a small number, say a few thousand, first in a "human bottleneck". That may have happened to humans in sub-saharan Africa, before they spread to Europe and India, as recently as 70,000 years ago, just locally. At that point the human population may have been reduced to as low as 2,000. This extinction event of course does not apply to the other hominids that had left Africa millions of years ago (in the case of Homo Erectus) and hundreds of thousands of years ago (in the case of H. Heidelbergensis, likely ancestor to modern humans, Neanderthals and Denisovans). There were plenty of intelligent hominids living outside Africa at the time, and they didn't go extinct until much later as a result of competition with modern humans. It's just that they were Neanderthals and Deinsovans rather than Homo Sapiens.

Also, those 2,000 people, though they probably had fire and the ability to make log boats, may or may not have had clothing, and didn’t have the most basic ideas of modern science. Most especially, they didn’t have agriculture. That didn’t happen until 10,000 BC onwards: Neolithic Revolution It wouldn’t have occurred to them to try to cultivate plants or animals or birds, fish etc for food. How likely is it that some global catastrophe causes all humans to lose their knowledge even of agriculture?

Meanwhile any colonists on Mars might be the very people that introduce extra terrestrial microbes from Mars to Earth, or develop some synthetic biology to use on Mars that gets out of hand. Also if somehow civilization collapses, e.g. if we no longer can make computer chips - who would be first affected? We could get by on Earth, it would be a nuisance, but many would still survive here without computer chips. The space colonies would be the first to go in that situation I think, as it's hard to imagine a space habitat functioning without computer chips. It will be a while probably before they can make computer chips. And if they can survive the collapse of civilization on Mars, surely there will be communities on Earth that survive too, and end up in a much better situation, materially, than the Martian colonists with their small pocket of technology on a barren planet.

So, it seems that the technology dependent humans on Mars will go extinct much more easily than humans on Earth in the event of our civilization somehow forgetting technology. If they can't import computer chips from Earth and either don't have the ability to make computer chips on Mars, or somehow have lost that ability, that's probably the end of them. But on Earth we could get by without computer chips. After all we managed without them right up to the middle of the twentieth century. Early twentieth century humans could not possibly have survived on Mars. We could make do here without radio, without television, even without internal combustion or steam engines, still many would survive on Earth. Nobody could survive for long on Mars without late twentieth century technology, and continual resupply from Earth, or some future twenty first century technology that we don't have yet.

So, I think as far as preserving our civilization, space settlement and colonization is pretty much neutral. It might help in very rare situations, might make things worse in other situations, or might make no difference at all. But as a backup, it's doing nothing. Not at current levels of technology.

So, I don't see this as a good motivation for sending humans into space. Rather, it's a motivation for setting up backups on Earth, if you think this is a serious risk. Plus taking great care about new technological developments that could lead to any kind of an extinction risk, such as synthetic biology, or return of extraterrestrial life to Earth.

Carl Sagan expressed a similar sentiment in Pale Blue Dot

"The Earth is the only world known, so far, to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment, the Earth is where we make our stand."

Maybe half a billion years from now it will be a priority to set up habitats elsewhere, for whatever intelligent creatures have evolved on Earth by then, or they might have other solutions to the future hotter sun, such as shades in orbit, or moving Earth, but it's not urgent right now.

To be clear, this is not at all an argument against settlement. I think settlement in space is likely to happen, and can be beneficial if done well. But I think the motivation for it matters. More on this below under Earth is the best place for a backup, where I link to some of my other articles as well.

This argument might be a good motivation for setting up backup libraries and other archives, but if so, the aim would be to restore Earth after a disaster, so those would be best as close as possible, for instance on Earth itself, or on the Moon, for this, see Backup on the Moon - seed banks, libraries, and a small colony

BUT WOULDN'T IT BE THE MOST WONDERFUL THING TO INTRODUCE EARTH LIFE TO MARS?

Some enthusiasts say, that no matter what happens, whether it makes Mars better for humans or not, that it would be the most wonderful thing we could do, to introduce Earth microbes to Mars, and more generally, spread Earth life throughout the universe in this way.

This is similar to the idea of introducing rabbits to Australia.

"Rabbits were introduced to Australia by the First Fleet and the first feral populations were established in Tasmania by 1827. The Victorian Acclimatisation Society released 24 rabbits on Christmas Day 1859 to hunt for sport and to help settlers feel more 'at home'.

"By 1886, rabbits had spread as far as the Queensland-NSW border and by 1900 they had reached Western Australia and the Northern Territory. In the 60 years following 1886, rabbits invaded 4 million square kilometres of Australia, making it one of the fastest colonising mammals anywhere in the world.

'Competition and grazing by rabbits' was listed as a key threatening process by the NSW Scientific Committee in 2002."

So, they did it for similar, and understandable reasons. To help settlers to feel at home and because they felt rabbits were good things to have in Europe to hunt for sport, and so would be in Australia too. They had no idea what the consequences would be for Australian wildlife and indeed for Australian farmers too, They say in that same fact sheet that

"It has been estimated that Australian agriculture loses more than $115 million a year because of overgrazing by rabbits. "

Many other animals have been introduced to Australia and cause problems, even large animals like camels and donkeys, which are hard to control over such a large continent, and including the feral cat. Again it might seem wonderful to introduce the friendly lovable kitty to Australia, but it has made small species of mammals extinct or set back attempts to help them to recover. The domestic cat is listed as a key threatening process for Australia.

It may seem wonderful to introduce the familiar Earth microbes to Mars, but when you think through the consequences, it might not be as wonderful as you think. It's important to look ahead and look at the consequences of your actions.

Rabbits have been eradicated from islands, and they are easily visible, large creatures. They can be kept out of smaller areas with fences. In principle you could even remove them from Australia in its entirety, and even more so the camels, donkeys etc.

However, if we introduce a microbe to Mars, and it is able to survive in some habitat on there, then there is no way it can be removed again, ever, for all future time, for as long as Mars remains habitable to them. Also there is no way to fence off part of Mars to keep it out.

If we look at the many possible consequences of introducing Earth microbes to Mars, some of them lead one to pause and wonder if this is such a good idea as it might seem at first. Both for humans on Mars and for any native life there as well. The repercussions, I think, could be far worse than the repercussions of introducing rabbits to Australia to make the settlers "feel at home".

PLANETARY PROTECTION

Before I go any further, I'd better introduce the idea of "Planetary protection", as I talk about it a lot here. Some of you might think it's protection from meteorites and such like disasters. And yes that's important and I'll cover that too, but usually the phrase is understood in the sense of the Outer Space Treaty, and particularly article nine, as referring to harmful contamination of other bodies in the solar system by materials from Earth, and adverse changes in the environment of Earth from return of extraterrestrial matter:

"Article IX: ... States Parties to the Treaty shall pursue studies of outer space, including the Moon and other celestial bodies, and conduct exploration of them so as to avoid their harmful contamination and also adverse changes in the environment of the Earth resulting from the introduction of extraterrestrial matter and, where necessary, shall adopt appropriate measures for this purpose." (emphasis mine)

All space faring nations and most with space faring aspirations, all have signed it and nearly all have taken the additional step of ratifying it (formally indicating its consent to be bound by the treaty, a process that varies according to the country but for most democracies involves passing a bill in parliament). The only states with space faring aspirations who haven't ratified it yet are the United Arab Emirates, Syria and North Korea. It's signed and ratified by 104 states so far in total.

There's no sign that anyone wants to evade these provisions, and indeed even those who haven't ratified the treaty are keen to abide by the provisions. Cassie Conley said recently on the Space Show that she was approached by the UAE who have ideas for a robotic mission to Mars, asking for advice to make sure they comply with the planetary protection provisions of the OST.

Also, it already it has the status of customary international law because of the consistent and widespread support of its fundamental tenets, and because it is based on a 1963 declaration that was adopted by consensus in the UN National Assembly. This means that it is binding on all states, even those who have neither signed nor ratified it. See page 220 of this paper.

The central phrase here is "harmful contamination". All of our planetary protection policies are based on interpretations of that phrase. The currently widely accepted customary interpretation is that

“any contamination which would result in harm to a state’s experiments or programs is to be avoided”.

NASA policy states explicitly that

“the conduct of scientific investigations of possible extraterrestrial life forms, precursors, and remnants must not be jeopardized”

The treaty covers all forms of contamination, but most especially, the aim is to protect other planets from self replicating Earth life and to protect Earth from extra terrestrial life returned from space. Discussions focus on microbial life transferred in either direction. Carl Sagan worked out the earliest recommendations with other researchers in the 1960s such as Joshua Lederberg, Nobel prize winning microbiologist, and one of the first astrobiologists.

Joshua Lederberg at work in a laboratory at the University of Wisconsin 1958, nobel prize winning pioneer in microbial genetics and pioneer in the field of planetary protection along with the astrobiologist Carl Sagan. He was one of the first astrobiologists, indeed he coined the word "exobiology"

The guidelines evolve to meet new situations, and details are now hammered out in international workshops of scientists. It's one of the functions of the Committee on Space Research (COSPAR). Every two years they meet to work out details of what is required for all the places we send spacecraft to, or may send them to in the future. The US has a planetary protection office, and a planetary protection officer, Cassie Conley. ESA's planetary protection officer is Gerhard Kminek. All space faring countries follow these guidelines when they send their spacecraft to vulnerable places in the solar system.

Planetary protection just makes sense here. It's easy to find life in habitable places in our solar system; just bring it with you. But that would be the worst possible anticlimax of all our searches to try to find life on Mars or elsewhere in our solar system, and would greatly diminish the scientific interest of Mars. Mars is a high risk target (category IV) in the forward direction, from Earth to Mars, and our robotic missions have to be sterilized if they land on the surface. There are several levels of sterilization depending where you go on Mars, with the highest level, IVc, for missions that approach places on Mars which could be habitable to Earth life. Curiosity is not sterilized to this highest standard so if it found a potential habitat on Mars, it could only observe it from a distance. Indeed, the team are facing this quandary right now, as there's a potential flow of seeps of salty liquid on the higher slopes of Mount Sharp which is within its range. But because Curiosity is not sufficiently sterilized, they will only be able to photograph them from a distance, and even then it's a decision that needs careful thought, to go close enough to photograph them.

The Moon, by comparison, is low risk (category II), as COSPAR scientists think there is no chance of Earth life reproducing there. The only requirement is to document anything you land on the Moon, including any crash landings and deliberate impacts. We have sent Earth life to the Moon already, in all our spacecraft as hardy spores clinging to the equipment, and as human wastes also in the case of the Apollo spacecraft. But that's no problem. The scientists believe that it will stay where you left it, or not be transported far in the processes that operate on the Moon, and as long as you document what you did clearly, follow up missions will be able to allow for it. The Moon is large enough so that some organic human wastes in one place will not matter for other missions even just a few kilometers away. So there's no problem sending humans to the Moon.

COSPAR don't yet have definitive guidelines for humans to Mars. Before they could publish these guidelines, they would need to meet to discuss what planetary protection measures are needed. And actually, there have been several meetings already of this type, and they all concluded that we don't yet have sufficient data for detailed guidelines. I think actually that if asked to approve a mission as soon as the 2030s, there might be a divergence of views. There is no way they'd have enough data by then to be able to make an authoritative decision, not unless we manage to send dozens of robotic missions to Mars in the next couple of decades (unlikely). I go into this in a fair bit of detail in the section on Searching for a non confrontational way ahead

In the other direction, backward contamination, returning materials from Mars, it is classified as restricted category V. This means that many precautions need to be taken in the case of a sample returned from Mars, also new laws would need to be passed, domestic and international, to protect Earth from Mars life. Depending on what we find on Mars, it could be that Mars life would do us no harm at all (for instance in an early life scenario, long made extinct by DNA life on Earth), or it could be that we need to take great care. For instance, if there is independently evolved advanced microbial life on Mars, the risk from a sample return could be similar to that of releasing new synthetic forms of microbial life into the wild from our laboratories. For these reasons and others, I think that the search for life on Mars is also best done in situ at present - you may be interested in the reasons given there.

WHY DO MICROBES ON HUMAN OCCUPIED SPACECRAFT GET A "SPECIAL PASS" TO MARS?

So, with this background, you can also ask the advocates for humans on the Mars surface, why land trillions of Earth microbes on Mars when you are searching for life there? With our robotic missions, we continue to sterilize as carefully as before, with no sign of any suggestion that we can relax the planetary protection requirements. Indeed, for robots, the trend is towards more rather than less by way of planetary protection.

So, what is special about all the microbes that hitch a lift in human occupied spacecraft? Why give them special treatment? Would it not be more sensible to keep them well away from the planet too, until we know what effect they will have?

That may seem far fetched, that Earth microbes would matter to Mars. But travelers from Hawaii have to be careful not to bring the oriental fruit fly Bactrocera Dorsalis into California because it would devastate the crops. It's rather like that.

Bactrocera dorsalis - a female oriental fruit fly. Travelers from Hawaii to California have to be careful not to introduce it, as it makes fruit unfit to eat. Similarly microbes from Earth introduced to Mars may have harmful effects on whatever is on Mars, for instance, if Mars hosts some vulnerable form of early life that has been made extinct by DNA based life on Earth. But it's not so easy to prevent Earth microbes from entering Mars on a human ship.

It would satisfy nobody to try a compromise solution for Hawaii imports to California, e.g. to import fruit only on the first day of each month. That would mean the fruit importers are severely restricted in what they can do, while the fruit growers are not protected from the oriental fruitfly, so it satisfies nobody.

In the case of human missions to Mars, I think everyone would agree that a crash of a human occupied spacecraft on the Mars surface, with provisions, air, water and human bodies, with the trillions of microbes that accompany us strewn across the landscape, would be pretty much an immediate end to planetary protection of Mars. Can we have 100% reliable landings of human occupied spacecraft on Mars? We are nowhere near that level of confidence with robotic spacecraft.

And indeed Elon Musk in an interview with the Washington Post about his ideas acknowledges the risks:

“the first mission wouldn’t have a huge number of people on it, because if something goes wrong, we want to risk the fewest number of lives as possible.”

“It’s dangerous and probably people will die—and they’ll know that,” he continued. “And then they’ll pave the way, and ultimately it will be very safe to go to Mars, and it will very comfortable. But that will be many years in the future.”

How can that approach be kept consistent with planetary protection for Mars? Well Elon Musk thinks there are probably no habitats for life on the surface; only deep underground. There's no problem with astronauts who volunteer to take huge risks exploring asteroids, or the Moon or anywhere else uninhabitable for Earth life. But is that the situation on Mars?

This is an article and kindle booklet I wrote about this:

Can We Risk Microbes From Human Crashes - On Mars? If Not, What Happens To Dreams To Colonize The Planet?

For more on this, see Searching for a non confrontational way ahead

But all this so far is negative vision. It's not going to inspire people. Again the colonization enthusiasts will agree that this would be the ideal way to proceed. However they will say that colonizing Mars is so important, that they have to go ahead anyway. They will say that we have no evidence that our microbes can cause any harm on Mars yet. And they will assure you that they will take the best precautions they can to protect the planet given the requirement that they have to land humans on Mars as soon as possible. The ones who think that there could be habitats for Earth microbes on Mars may go on to say that some irreversible contamination with Earth life is inevitable, so we just have to find a way to cope with that.

NEED FOR VISION AND INSPIRATION

Humans need vision and inspiration, I agree. If you just say "can't do this, don't do that" that's a negative vision that can't inspire anyone. We need a positive vision if we are going to have any alternatives to this Mars colonization idea for the future.

So, I think I'm trying to develop an alternative positive vision here. Whether it works or not is something I'm finding out. It's getting enough favourable attention to be encouraging. In the process I've also come across others with alternative visions of their own. So perhaps it might encourage them too to continue to develop their visions and present their dreams.

The more visions we have, the more options we have for the future. It is hard to present a vision like this in a short period of time. Remember that the positive vision of Mars colonization has many details to support it, built up by its advocates over books, talks, television programs and so on, for decades. So an alternative positive vision also has to be quite detailed. This book, though it is quite long, is a rapid summary of just the main ideas.

Also, I'd also just like to say at the outset to humans on Mars enthusiasts, that "This approach doesn’t mean that humans can never land on Mars ever". It's the microbes that are the planetary protection issue here, not humans. And the microbes are an issue right now because we don't know what is on Mars, or what effects our microbes will have on the planet. I will suggest that whether microbes continue to be an issue in the future, or whether we can relax planetary protection measures for Mars, is something we can only find out by studying the planet in much more detail than we have so far.

THIS BOOKLET OUTLINES ONE PARTICULAR VISION OF MANY

The main new thing about this booklet compared to other treatments of the subject is that I put planetary protection, the value of science, and reversible biological exploration as central core principles from the outset. Often these topics, especially planetary protection, are barely mentioned.

I outline one particular vision here and present my own views unashamedly. I expect most readers will agree with me on some points and disagree on others. My main aim here is to present a vision in enough detail to stimulate discussion about other possibilities for future alternative visions. There could be many other ways to develop such a vision.

==

and for more information please view the following web pages

( please using the right click of your mouse, and Open Link in Next Private Window, )