UNIDAD DE VALOR REAL U.V.R.: SISTEMA DE AMORTIZACIÓN EN SERIE UNIFORME ORDINARIA
Uno de los sistemas actualmente vigentes para amortización de crédito hipotecario en la adquisición de vivienda en Colombia, es en serie uniforme ordinaria, cuotas iguales, en U.V.R. Veamos esta aplicación de la serie con un ejercicio practico.
Ejemplo.
Calcular el valor de las cuotas iguales (serie uniforme) en UVR y en pesos por cada millón, de un crédito hipotecario contratado a 15 años y a una tasa de interés del 14% y suponiendo tasa de inflación del 10% anual.
El sistema de crédito hipotecario, internamente solo conoce la existencia de U.V.R, por lo tanto, debemos de convertir el crédito en U.V.R, de acuerdo a la cotización de la unidad en el momento del desembolso. Para nuestro ejemplo, supongamos que el valor sea de $120 y así podemos estimar el valor presente del préstamo en unidades UVR (Pu). Luego de establecer el valor de Pu, determinamos el valor de la serie uniforme en U.V.R, teniendo en cuenta la tasa de interés a la cual se contrato el crédito.
El préstamo del 8.33.33 UVR (equivalentes a $1 millón) se amortizan en 180 cuotas mensuales de 106.40 UVR. Elaboraremos sendas tablas de amortización en UVR y en pesos, para observar el comportamiento de las cuotas:
En la tabla de amortización en U.V.R, podemos destacar que se trata de una similar a las que ya se han realizado, con la única diferencia que esta elaborada en unidades de valor real.
Para la elaboración de la tabla en pesos, hemos agregado una nueva columna al final, correspondiente al calculo del valor de la U.V.R (o tasa de cambio de la unidad frente a los pesos) a partir de la fecha y la hemos proyectado bajo el supuesto de que la tasa de inflación permanecerá en los niveles del 10% anual durante toda la vigencia del crédito. Recordemos que la tasa de inflación anual, se comporta en forma análoga a la tasa efectiva anual y para realizar la proyección, requerimos encontrar la tasa de inflación periódica mensual.
Ip= (1+ie)1/p-1=(1+.10)1/12-1=.80% periódica mensual.
Para efectuar la estimación del valor de la unidad en los siguientes meses, encontramos los valores futuros respectivamente para el mes que se quiera calcular:
Si queremos calcular el valor de la unidad para el mes 3, por citar el ejemplo para cualquier mes, hallamos el valor futuro del valor presente de $120, en tres meses, a una tasa del .80% mensual.
F=P(1+i)N = 120(1+.008)3=$122.89.
Devolvámonos a la tabla en pesos y observemos que el saldo en pesos asciende, pero no nos preocupemos, que en algún momento descenderá hasta llegar a cero. Nuestra preocupación debe estar focalizada en las tasas de interés, independientemente de la forma como se amortice la deuda. Si queremos encontrar la tasa de interés, tenemos que construir el flujo de caja de la decisión de endeudamiento y calcularla. Sin embargo este procedimiento no se requiere, porque este es un caso de tasas múltiples, en el cual simplemente calculando la tasa con la formula respectiva la determinaremos:
Tasa efectiva = Tasa de inflación + Tasa en U.V.R + Tasa de inflación x Tasa en UVR =0.10 + 0.14 + 0.10 ? 0.14 = 25.40% Efectiva anual.
Para tomar realmente la decisión de endeudamiento nos debemos de preocupar por la tasa de interés primordialmente. Si se encuentran tasas más baratas, por ejemplo en pesos, esta debe ser nuestra decisión. Para sorpresa de muchos, la tasa mas baja ha sido históricamente la del sistema de unidad de poder adquisitivo constante (UPAC) y actualmente el sistema de unida de valor real (U.V.R). Tomar la decisión por otros motivos, seria totalmente ilógico.