3.5 APLICACIONES
3.5 APLICACIONES
Dentro de los problemas típicos que se pueden expresar de manera directa mediante integrales y complementarios al problema básico de “área bajo la curva” se tienen:
· Área entre curvas.
· Sólidos de revolución.
· Longitud de curvas.
Área entre la curva y el eje x
En efecto, ya lo hemos señalado, integral no es lo mismo que área, ya que el concepto de integral es realmente un concepto mucho más amplio y que se puede aplicar a infinidad de situaciones novedosas. Por otro lado, realizando las correcciones necesarias respecto de los valores negativos que pueda tomar una función en un intervalo la integral calcula perfectamente el área entre el eje x y una curva dada.
Pero el concepto de área se puede ampliar a espacios delimitados entre diversas curvas en el plano, estudiemos ahora esa generalización.
Longitud de una curva
La integral como concepto nace alrededor del cálculo numérico, por lo que muchas de las integrales que se nos presentan en la vida cotidiana ni tan siquiera son planteadas analíticamente; sin embargo, eso no las hace inútiles; ¡por el contrario! El potencial analítico de la integral se logra ante la simplicidad del concepto no deja de ser una suma.
Pero ahora con las computadoras, esas sumas las podemos hacer de manera muy eficiente.
Superficies y sólidos de Revolución
En los cuerpos físicos ocurren muchos fenómenos asociados a su geometría, dentro de esos fenómenos se presenta la ocurrencia de la masa, el peso y por tanto los efectos de la atracción gravitatoria, observemos ahora dos conceptos físicos necesarios para el estudio de cantidades físicas como las mencionadas.