Brewing is the production of beer by steeping a starch source (commonly cereal grains, the most popular of which is barley) in water and fermenting the resulting sweet liquid with yeast. It may be done in a brewery by a commercial brewer, at home by a homebrewer, or by a variety of traditional methods such as communally by the indigenous peoples in Brazil when making cauim. Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests that emerging civilizations including ancient Egypt and Mesopotamia brewed beer. Since the nineteenth century the brewing industry has been part of most western economies.
The basic ingredients of beer are water and a fermentable starch source such as malted barley. Most beer is fermented with a brewer's yeast and flavoured with hops. Less widely used starch sources include millet, sorghum and cassava. Secondary sources (adjuncts), such as maize (corn), rice, or sugar, may also be used, sometimes to reduce cost, or to add a feature, such as adding wheat to aid in retaining the foamy head of the beer. The proportion of each starch source in a beer recipe is collectively called the grain bill.
Steps in the brewing process include malting, milling, mashing, lautering, boiling, fermenting, conditioning, filtering, and packaging. There are three main fermentation methods, warm, cool and spontaneous. Fermentation may take place in an open or closed fermenting vessel; a secondary fermentation may also occur in the cask or bottle. There are several additional brewing methods, such as barrel aging, double dropping, and Yorkshire Square.
Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests emerging civilizations including ancient Egypt and Mesopotamia brewed beer. Descriptions of various beer recipes can be found in cuneiform (the oldest known writing) from ancient Mesopotamia. In Mesopotamia the brewer's craft was the only profession which derived social sanction and divine protection from female deities/goddesses, specifically: Ninkasi, who covered the production of beer, Siris, who was used in a metonymic way to refer to beer, and Siduri, who covered the enjoyment of beer. Ethnographic studies indicate that women have often been closely associated with brewing in developing and pre-industrial societies.
As almost any cereal containing certain sugars can undergo spontaneous fermentation due to wild yeasts in the air, it is possible that beer-like beverages were independently developed throughout the world soon after a tribe or culture had domesticated cereal. Chemical tests of ancient pottery jars reveal that beer was produced as far back as about 7,000 years ago in what is today Iran. This discovery reveals one of the earliest known uses of fermentation and is the earliest evidence of brewing to date. In Mesopotamia, the oldest evidence of beer is believed to be a 6,000-year-old Sumerian tablet depicting people drinking a beverage through reed straws from a communal bowl. A 3900-year-old Sumerian poem honouring Ninkasi, the patron goddess of brewing, contains the oldest surviving beer recipe, describing the production of beer from barley via bread. The invention of bread and beer has been argued to be responsible for humanity's ability to develop technology and build civilization. The earliest chemically confirmed barley beer to date was discovered at Godin Tepe in the central Zagros Mountains of Iran, where fragments of a jug, at least 5,000 years old was found to be coated with beerstone, a by-product of the brewing process. Beer may have been known in Neolithic Europe as far back as 5,000 years ago, and was mainly brewed on a domestic scale.
Ale produced before the Industrial Revolution continued to be made and sold on a domestic scale, although by the 7th century AD beer was also being produced and sold by European monasteries. During the Industrial Revolution, the production of beer moved from artisanal manufacture to industrial manufacture, and domestic manufacture ceased to be significant by the end of the 19th century. The development of hydrometers and thermometers changed brewing by allowing the brewer more control of the process, and greater knowledge of the results. Today, the brewing industry is a global business, consisting of several dominant multinational companies and many thousands of smaller producers ranging from brewpubs to regional breweries. More than 133 billion litres (35 billion gallons) are sold per year—producing total global revenues of $294.5 billion (£147.7 billion) in 2006.
There are several steps in the brewing process, which may include malting, mashing, lautering, boiling, fermenting, conditioning, filtering, and packaging.
Malting is the process where barley grain is made ready for brewing. Malting is broken down into three steps in order to help to release the starches in the barley. First, during steeping, the grain is added to a vat with water and allowed to soak for approximately 40 hours. During germination, the grain is spread out on the floor of the germination room for around 5 days. The final part of malting is kilning when the malt goes through a very high temperature drying in a kiln; with gradual temperature increase over several hours.
When kilning is complete, the grains are now termed malt, and they will be milled or crushed to break apart the kernels and expose the cotyledon, which contains the majority of the carbohydrates and sugars; this makes it easier to extract the sugars during mashing. Milling also separates the seed from the husk. Care must be taken when milling to ensure that the starch reserves are sufficiently milled without damaging the husk and providing coarse enough grits that a good filter bed can be formed during lautering. Grains are typically dry-milled with roller mills or hammer mills. Hammer mills, which produce a very fine mash, are often used when mash filters are going to be employed in the lautering process because the grain does not have to form its own filter bed. In modern plants, the grain is often conditioned with water before it is milled to make the husk more pliable, thus reducing breakage and improving lauter speed.
Mashing converts the starches released during the malting stage into sugars that can be fermented. The milled grain is mixed with hot water in a large vessel known as a mash tun. In this vessel, the grain and water are mixed together to create a cereal mash. During the mash, naturally occurring enzymes present in the malt convert the starches (long chain carbohydrates) in the grain into smaller molecules or simple sugars (mono-, di-, and tri-saccharides). This "conversion" is called saccharification which occurs between the temperatures 140 - 158 °F. The result of the mashing process is a sugar-rich liquid or "wort", which is then strained through the bottom of the mash tun in a process known as lautering. Prior to lautering, the mash temperature may be raised to about 75–78 °C (167–172 °F) (known as a mashout) to free up more starch and reduce mash viscosity. Additional water may be sprinkled on the grains to extract additional sugars (a process known as sparging).
The wort is moved into a large tank known as a "copper" or kettle where it is boiled with hops and sometimes other ingredients such as herbs or sugars. This stage is where many chemical reactions take place, and where important decisions about the flavour, colour, and aroma of the beer are made. The boiling process serves to terminate enzymatic processes, precipitate proteins, isomerize hop resins, and concentrate and sterilize the wort. Hops add flavour, aroma and bitterness to the beer. At the end of the boil, the hopped wort settles to clarify in a vessel called a "whirlpool", where the more solid particles in the wort are separated out.
After the whirlpool, the wort is drawn away from the compacted hop trub, and rapidly cooled via a heat exchanger to a temperature where yeast can be added. A variety of heat exchanger designs are used in breweries, with the most common a plate-style. Water or glycol run in channels in the opposite direction of the wort, causing a rapid drop in temperature. It is very important to quickly cool the wort to a level where yeast can be added safely as yeast is unable to grow in very high temperatures, and will start to die in temperatures above 60 °C (140 °F). After the wort goes through the heat exchanger, the cooled wort goes into a fermentation tank. A type of yeast is selected and added, or "pitched", to the fermentation tank. When the yeast is added to the wort, the fermenting process begins, where the sugars turn into alcohol, carbon dioxide and other components. When the fermentation is complete the brewer may rack the beer into a new tank, called a conditioning tank. Conditioning of the beer is the process in which the beer ages, the flavour becomes smoother, and flavours that are unwanted dissipate. After conditioning for a week to several months, the beer may be filtered and force carbonated for bottling, or fined in the cask.