12 Thermodynamics

Instructional Experiments on Thermodynamics & Statistical Physics

(and some related theory papers)

Topics

-temperature & thermometry

To top?

Chang, K. N., M. S. Cook, K. M. Hamlyn, and R. L. Chaplin (1978), "Modern thermocouple experiment," Am. J. Phys. 46, 1180-1182.

Edmunds, D. L. and J. A. Cowen (1981), "Inexpensive digital thermometer," Am. J. Phys. 49, 599-601.

Geballe, R. (1991), "Note on "A thermometer based on Archimede's principle,", by George D. Nickas [Am. J. Phys. 57, 845-846 (1989)]," Am. J. Phys. 59, 90.

Jaffe, S. E. and B. Stoeckly (1980), "Audible demonstration device for qualitative analysis of temperature-dependent resistance," Am. J. Phys. 48, 88.

Kittel, P., W. R. Hackleman, and R. J. Donnelly (1978), "Undergraduate experiment on noise thermometry," Am. J. Phys. 46, 94-100.

Knudsen, A. W. (1985), "Boltzmann temperature: an instructional experiment for the advanced laboratory," Am. J. Phys. 53, 409-415.

Nickas, G. D. (1989), "A thermometer based on Archimedes' principle," Am. J. Phys. 57, 845-6.

Taylor, B. E. (1989), "Integrated sensors to facilitate temperature measurement," Am. J. Phys. 57, 1049-50.

Tennakone, K. (1979), "Inexpensive resistance thermometer," Am. J. Phys. 47, 120.

Thomas, J. F. and R. Deltour (1981), "Temperature dependence of the platinum resistivity: an experiment for students in solid state and cryophysics," Am. J. Phys. 49.

Vetterling, W. T. and M. Andelman (1979), "Comments on: Undergraduate experiment on noise thermometry [P. Kittel, W. R.; Hackelman, and R. J. Donnelly, Am. J. Phys. 46, 94 (1978)]," Am. J. Phys. 47, 382-384.

Wintle, H. J. (1969), "Experimental thermodynamics with a stretched wire," Am. J. Phys. 37, 406-409.

Beckman, O. (1997), "Anders Celsius and the fixed points of the Celsius scale," Eur. J. Phys. 18 (3), 169-75.

Pellicer, J., J. A. Manzanares, and S. Mafé (1991), "The mercury in glass thermometer of nonuniform capillary tube," PE 26, 384-385.

-thermodynamic properties of gases

To top?

Alverson, G., D. Garelick, and E. Gobby (1985), "An inexpensive pressure transducer," Am. J. Phys. 53, 1108.

Baker, B. (1999), "An easy to perform but often counterintuitive demonstration of gas expansion," Am. J. Phys. 67 (8), 712-713.

Berge, P. O., G. U. Nienhaus, and J. B. Ziegler (1994), "Constant volume gas thermometer without mercury," Am. J. Phys. 62 (7), 666-667.

Blaszczak, Z. and P. Gauden (1990), "Application of a laser beam in demonstration of adiabatic gas decompression," Am. J. Phys. 58, 1112-1113.

Brown, J. B., J. C. Dore, C. Isenberg, and S. J. Rogers (1995), "Pascal's demonstration experiment: weighing the atmosphere," Am. J. Phys. 63 (10), 886-888.

Buchner, R. K. and R. A. Doyle (1976), "Apparatus to demonstrate Boyle's law," Am. J. Phys. 44, 493-494.

de Lange, O. L. and J. Pierrus (2000), "Measurement of bulk moduli and ratio of specific heats of gases using Ruchardt's experiment," Am. J. Phys. 68 (3), 265-70.

DeJong, M. L. and B. E. Leonard (1972), "Demonstration of Boyle's law in an air track," Am. J. Phys. 40, 1342.

Fischer, F. and R. L. WIld (1979), "Demonstration of reduced gas pressure in a centrifugal field," Am. J. Phys. 47, 450-451.

Goussard, J. -O. and B. Roulet (1993), "Free expansion for real gases," Am. J. Phys. 61 (9), 845-8.

Hayn, C. H. and V. Galvin, Jr. (1979), "Experimental determination of the mass of air molecules from the law of atmospheres," Am. J. Phys. 47, 69-70.

Hendricks, J., D. Lee, and M. Rugheimer (1971), "Liquid nitrogen demonstration," Am. J. Phys. 39, 844.

Hunt, J. L. (1985), "Accurate experiment for measuring the ratio of specific heats of gases using an accelerometer," Am. J. Phys. 53, 696-697.

Junod, A. and J. Muller (1977), "A simple demonstration on the freezing of the rotational energy of molecular hydrogen," Am. J. Phys. 45, 957-959.

Karas, R. H. and S. P. Davis (1979), "Pressure-volume relations of a real gas," Am. J. Phys. 47, 473-474.

Livesey, D. L. (1965), "Apparatus for measuring the specific heat of a gas," Am. J. Phys. 33, 18-19.

Mellen, W. R. (1990), "Oscillation of a gas balloon due to a temperature gradient," Am. J. Phys. 58, 781-2.

Millet, L. E. (1993), "The noncalculus expansion of gases experiment: U=NkT," Am. J. Phys. 61 (1), 79-80.

Mottmann, J. (1995), "Laboratory experiment for the ratio of specific heats of air," Am. J. Phys. 63 (3), 259-60.

Severn, G. D. and T. Steffensen (2001), "A simple extension of Ruchardt's method for measuring the ratio of specific heats of air using microcomputer-based laboratory sensors," Am. J. Phys. 69 (3), 387-9.

Smith, D. G. (1979), "Simple Cp/Cv resonance appartus suitable for the physics teadching laboratory," Am. J. Phys. 47, 593-596.

Torzo, G., G. Delfitto, B. Pecori, and P. Scatturin (2001), "A new microcomputer-based laboratory version of the Ruchardt experiment for measuring the ratio p/C_v in air," Am. J. Phys. 69 (11), 1205-11.

Tykodi, R. J. (1970), "The porous plug experiment - alot of mileage on a little gas," Am. J. Phys. 38, 586-590.

Vandyck, M. A. (1989), "An alternative type of water barometer," Am. J. Phys. 57, 467-469.

Velasco, S., A. Gonzalez, F. L. Roman, and J. A. White (2002), "A simple method for measuring atmospheric pressure," Am. J. Phys. 70 (12), 1236-7.

Velasco, S., F. L. Roman, and J. Faro (1998), "A simple experiment for measuring the adiabatic coefficient of air," Am. J. Phys. 66 (7), 642-3.

Visscher, P. B. (1979), "Simple student-repeatable atmospheric pressure demonstration," Am. J. Phys. 47, 1015.

Weltner, K. (1993), "Measurement of specific heat capacity of air," Am. J. Phys. 61 (7), 661-2.

-specific heat & calorimetry

To top?

Chaudhary, D. R. and V. Kumar (1972), "A continuous fall electrical method for measuring the specific heat of loose granular materials," Am. J. Phys. 40, 1176-1177.

Deacon, C. G. and J. P. Whitehead (1992), "Determination of the ratio of the principal specific heats," Am. J. Phys. 60, 859-860.

Helms, M. (1965), "Bunsen ice calorimeter," Am. J. Phys. 33, No. 12 - xi - xii.

Manosa, L., M. Bou, C. Calles, and A. Cirera (1996), "Low-cost differential scanning calorimeter," Am. J. Phys. 64 (3), 283-7.

Reynolds, J. M. (1974), "Elementary physics experiment relevant to other disciplines: bomb calorimetry," Am. J. Phys. 42, 77-79.

Robinson, G. F. (1974), "Temperature change correction for constant power input calorimetry experiments," Am. J. Phys. 42, 1129-1130.

Talpe, J. H., V. I. Bekeris, and C. E. Acha (1990), "Measurement of thermal conductivity and heat capacity in an undergraduate physics laboratory," Am. J. Phys. 58, 379-81.

Tompson, C. W. and H. W. White (1983), "Latent heat and low-temperature heat capacity experiment for the general physics laboratory," Am. J. Phys. 51, 362-364.

Trickey, S. B. (1973), "Comment on "Analysis of low-temperature heat capacity data" [S.R. D. Weir, Am. J. Phys. 40, 1085 (1972)]," Am. J. Phys. 41.

Weir, R. D. (1972), "Analysis of low-temperature heat capacity data," Am. J. Phys. 40, 1085-1091.

Williams, T. W., III (1965), "Apparatus notes: More uses for plastic foam," Am. J. Phys. 33, No. 3 - xxii.

Kraftmakher, Y. (2004), "Pulse calorimetry with a light bulb," Eur. J. Phys. 25 (6), 707-15.

Krupska, A., M. Krupski, and J. Konarski (2001), "Phase delay effect in a thermally homogeneous system heated periodically," Eur. J. Phys. 22 (2), 133-8.

Bligh, P. H., D. Higgs, and B. P. Ver (1988), "Measurement of the ratio of heat capacities," PE 23, 314-317.

O'Sullivan, C. T. (1990), "Correction for cooling techniques in heat experiments," PE 25, 177-179.

-chemical potential & osmotic pressure

To top?

Abraham, N. and P. Palffy-Muhoray (2004), "A dunking bird of the second kind," Am. J. Phys. 72 (6), 782-785.

Hobbie, R. K. (1974), "Osmotic pressure in the physics course for students of the life sciences," Am. J. Phys. 42, 188-197.

-energy conservation & mechanical equivalent of heat

To top?

Bent, H. A. (1971), "Joule's thermometer whirling experiments," Am. J. Phys. 39, 459-460.

Horst, J. L. and M. Weber (1984), "Joule's experiment modified by Newton's Law of Cooling," Am. J. Phys. 52, 259-261.

Lonc, W. P. (1989), "Heat experiment woth a microwave oven," Am. J. Phys. 57 (1), 51-2.

Mitschele, J. (1990), "Comment on "Heat experiment with a microwave oven," by W. P. Lonc [Am. J. Phys. 57, 51-52 (1989)]," Am. J. Phys. 58, 793.

Neil, T. E. and P. D. Schulze (1986), "Mechanical equivalent of heat: electrical method by vaporization of liquid nitrogen," Am. J. Phys. 54, 474-5.

-entropy, reversibility & second law

To top?

Fundaun, I., C. Reese, and H. H. Soonpaa (1992), "Charging a capacitor," Am. J. Phys. 60, 1047-1048.

Gupta, V. K., G. Shanker, and N. K. Sharma (1984), "Reversibility and step processes: an experiment for the undergraduate laboratory," Am. J. Phys. 52, 945-947.

Heinrich, F. (1986), "Entropy change when charging a capacitor: a demonstration experiment," Am. J. Phys. 54, 742-744.

Jordan, A. D. and A. H. Kalantar (1979), "Entropy changes: a laboratory experiment," Am. J. Phys. 47, 557-558.

-heat engines and thermodynamic cycles

To top?

Walker, G. (1989), Miniature refrigerators for cryogenic sensors and cold electronics (Oxford), ISBN 0-19-854815-X, Call no. TK 7872 C77 W35.

Ahlborn, B. and J. Camire (1995), "Thermoacoustic heat pumps with maximum power transfer," Am. J. Phys. 63 (5), 449-451.

Barford, N. C. (1981), "Reversible energy converter," Am. J. Phys. 49, 460-465.

Barnes, G. (1989), "The two cycles of the rotary Curie-point heat engine," Am. J. Phys. 57, 223-229.

Bartlett, A. A. (1976), "Introductory experiment to determine the thermodynamic efficiency of a household refrigerator," Am. J. Phys. 44, 555-559.

Dempsey, D. F. and J. K. Hartman (1986), "pV cycle area equals work done: an undergraduate experiment," Am. J. Phys. 54, 1086-8.

Gordon, J. M. (1991), "Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration," Am. J. Phys. 59, 551-555.

Guemez, J., R. Valiente, C. Fiolhais, and M. Fiolhais (2003), "Experiments with a sunbird," Am. J. Phys. 71 (12), 1264-7.

Guemez, J., R. Valiente, C. Fiolhais, and M. Fiolhais (2003), "Experiments with the drinking bird," Am. J. Phys. 71 (12), 1257-63.

Hirsch, L. (1978), "An improved Hero's engine," Am. J. Phys. 46, 773.

Jeromen, A. (2003), "A simplified thermoacoustic engine demonstration," Am. J. Phys. 71 (5), 496-9.

Johnson, A. D. and Jr. McNichols (1986), "Comments on "Demonstration solid state engine" [R. D. Spence and M. J. Harrison, Am. J. Phys. 52, 1144 (1984)]," Am. J. Phys. 54, 745-746.

Kaufman, R., T. V. Marcella, and E. Sheldon (1996), "Reflections on the pedagogic motive power of unconventional thermodynamic cycles," Am. J. Phys. 64 (12), 1507-17.

Marston, E. H. and M. A. Jensen (1973), "A room temperature steam engine," Am. J. Phys. 41, 726-727.

Mattocks, P. G. (1990), "A 0.7-mW magnetic heat engine," Am. J. Phys. 58, 545-548.

Mullen, J. G., . g. W. Look, and J. Konkel (1975), "Thermodynamics of a simple rubber-band engine," Am. J. Phys. 43, 349-353.

Mullen, J. G., R. Wasserstein, and L. Burmeister (1978), "On optimizing an Archibald ruber-band heat engine," Am. J. Phys. 46, 1107-1110.

Ordonez, C. A. (1996), "Cryogenic heat engine," Am. J. Phys. 64 (4), 479-81.

Preston, R. S. (1985), "Comment on 'Remark on the second law of thermodynamics', [Am. J. Phys. 52, 720 (1984)]," Am. J. Phys. 53 (11), 1104-5.

Russell, D. A. and P. Weibull (2002), "Tabletop thermoacoustic refrigerator for demonstrations," Am. J. Phys. 70 (12), 1231-3.

Simon, R. A. (1983), "Stirling's cycle and the second law of thermodynamics," Am. J. Phys. 51, 496-499.

Spence, R. D. and M. J. Harrison (1984), "Demonstration solid state engine," Am. J. Phys. 52, 1144-1145.

Spence, R. D. and M. J. Harrison (1985), "Speed effects of the effeciency of heat engines," Am. J. Phys. 53, 890-893.

Toftlund, H. (1987), "A rotary Curie point magnetic engine: a simple demonstration of a Carnot-cycle device," Am. J. Phys. 55, 48-49.

Wheatley, J., T. Hofler, G. W. Swift, and A. Migliori (1985), "Understanding some simple phenomena in thermoacoustics with applications to acoustical heat engines," Am. J. Phys. 53, 147-162.

Yeh, H. (1984), "Remark on the second law of thermodynamics," Am. J. Phys. 52, 720-723.

Zijun Yan, Jincan Chen, and J. M. Gordon (1993), "Comment on `Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration', by J.M. Gordon [Am J. Phys. 59, 551-555 (1991)]," Am. J. Phys. (USA) 61 (4), 380.

Calvo Hernandez, A., J. M. M. Roco, A. Medina, and S. Velasco (1996), "An irreversible and optimized four stroke cycle model for automotive engines," Eur. J. Phys. 17 (1), 11-18.

Hegman, N., K. Vad, S. Meszaros, and J. Lindenmajer (1998), "A superconducting pendulum as a thermodynamic machine," Eur. J. Phys. 19 (3), 259-64.

Hurkala, J., M. Gall, R. Kutner, and M. Maciejczyk (2005), "Real-time numerical simulation of the Carnot cycle," Eur. J. Phys. 26 (5), 673-80.

Silverman, M. P. (1982), "The vortex tube: a violation of the second law?," Eur. J. Phys. 3, 88-92.

Azevedo e Silva, J. F. M. (1991), "The thermodynamics of a refrigeration system," PE 26, 115-119.

Stevenson, P. W. (1970), "An investigation into the performance of a minature diesel engine," PE 5, 170-173.

Thompson, F. (1980), "An inexpensive non-contacting transducer," PE 15, 244.

-thermoelectric effects

To top?

Bednarek, S. (1995), "Thermoelectric motor," Am. J. Phys. 63 (11), 1051-1052.

Ensanian, M. (1968), "Thermocell configurations for demonstrating thermogalvanic energy conversion," Am. J. Phys. 36, 761-762.

Gaggioli, R. A. . and J. W. Mitchell (1966), "Thermocouple corrections from irreversibility theory," Am. J. Phys. 34, 549-552.

Gordon, J. M. (1991), "Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration," Am. J. Phys. 59, 551-555.

Greenslade, T. B., Jr. (1970), "Thermoelectric power experiment for the advanced laboratory," Am. J. Phys. 38, 480-486.

Guenault, A. M., N. S. Lawson, and S. D. Veazey (1978), "Measurement of thermoelectric effects at low temperature," Am. J. Phys. 46, 399-401.

Gupta, V. K., G. Shanker, B. Saraf, and N. K. Sharma (1984), "Experiment to verify the second law of thermodynamics using a thermoelectric device," Am. J. Phys. 52, 625-628.

Mortlock, A. J. (1965), "Experiments with a thermoelectric heat pump," Am. J. Phys. 33, 813-815.

Van Baak, D. A. (1992), "Temperature servomechanisms using thermoelectric modules," Am. J. Phys. 60, 803-815.

Walstrom, P. L. (1988), "Spatial dependence of thermoelectric voltages and reversible heats," Am. J. Phys. 56, 890-4.

Cvahte, M. and J. Strnad (1988), "A thermoelectric experiment in support of the second law," Eur. J. Phys. 9, 11-17.

Kraftmakher, Y. (2005), "Simple experiments with a thermoelectric module," Eur. J. Phys. 26 (6), 959-67.

-rubber thermodynamics

To top?

Savarino, G. and M. R. Fisch (1991), " A general physics laboratory investigation of the thermodynamics of a rubber band," Am. J. Phys. 59, 141-144.

Marx, G., J. Ogborn, and P. Tasnadi (1984), "Rubber as a medium for teaching thermodynamics," Eur. J. Phys. 5, 232-237.

-blackbody radiation, radiometry & optical pyrometry

To top?

Agrawal, D. C., H. S. Leff, and V. J. Menon (1996), "Efficiency and efficacy of incandescent lamps," Am. J. Phys. 64 (5), 649-654.

Armstrong, H. L. (1983), "An experiment in optical pyometry," Am. J. Phys. 51, 89.

Baltes, H. P. (1974), "Comment on blackbody radiation in small cavities," Am. J. Phys. 42, 505-507.

Bartels, R. A. (1990), "Do darker objects really cool faster?," Am. J. Phys. 58, 244-248.

Dahm, A. J. and D. N. Langenberg (1975), "Blackbody radiation from a single-mode source: a demonstration," Am. J. Phys. 43, 1004-1006.

Dryzek, J. and K. Ruebenbauer (1992), "Planck's constant determination from black-body radiation," Am. J. Phys. 60, 251-253.

Dusek, J., R. J. Kearney, and G. Baldini (1980), "Analysis of blackbody radiation with derivative spectroscopy," Am. J. Phys. 48, 232-236.

Edmonds, I. R. (1968), "Stephan-Boltzman law in the laboratory," Am. J. Phys. 36, 845.

Evans, J. and B. Popp (1985), "Pictet's experiment: the apparent radiation and reflection of cold," Am. J. Phys. 53, 737-753.

Fuller, R. M. (1973), "A simple radiometer using diodes as thermal detectors," Am. J. Phys. 41, 443-444.

George, S., J. E. Fredrickson, and A. Sankaranarayanan (1972), "Planck's constant from Wien's displacement law," Am. J. Phys. 40, 621-622.

Hager, N. E., Jr. (1965), "A student radiometer," Am. J. Phys. 33, 92-96.

Jaecks, D. H. and R. du Bois (1972), "Stefan-Boltzmann and radiation distribution laws in the laboratory," Am. J. Phys. 40, 1179-1180.

Knudsen, A. W. (1985), "Boltzmann temperature: an instructional experiment for the advanced laboratory," Am. J. Phys. 53, 409-415.

Mannikopoulos, C. N. and J. F. Aquirre (1977), "Determination of the black body radiation constant hc/k in the modern physics laboratory," Am. J. Phys. 45, 576-578.

Prasad, B. S. N. and R. Mascarenhas (1978), "A laboratory experiment on the application of Stefan's law to tungsten filament electric lamps," Am. J. Phys. 46, 420-423.

Zanetti, V. (1985), "Temperature of incandescent lamps," Am. J. Phys. 53, 546-548.

Arenas, A., L. Victoria, F. J. Abellan, and J. A. Ibanez (1996), "Dynamic characterization of a windmill radiometer," Eur. J. Phys. 17 (6), 331-6.

Carracosa, M., F. Cusso, and F. Agullo-Lopez (1985), "Lambert emitters," Eur. J. Phys. 6, 183-187.

Euler, K. -J., R. Kirchoff, and O. Ortelbach (1981), "Optical and radiation pyrometry in the training laboratory of practical physics at the University (Gesamthochschule) of Kassel," Eur. J. Phys. 2, 133-138.

McInally, M. (1982), "A Stefan's constant apparatus showing anomalous behavior," PE 17, 235-236.

Putley, E. H. and D. E. Burgess (1984), "Runford and the teapots - a demonstration of thermal imaging," PE 19, 20-23.

-thermodynamic distributions

To top?

Berg, C. L. and R. Chang (1984), "Demonstration of Maxwell distribution law of velocity by spectral line shape analysis," Am. J. Phys. 52, 80-81.

Hite, D., T. B. Boykin, N. Singh, and D. Shen (2005), "A simple Fermi-Dirac integrating circuit," Am. J. Phys. 73 (9), 856-9.

Sturge, M. D. and Song Bac Toh (1999), "An experiment to demonstrate the canonical distribution," Am. J. Phys. 67 (12), 1129-31.

Sussman, M. V. (1966), "Visualizing statistical thermodynamics: the Boltzman distribution model," Am. J. Phys. 34, 1143-1146.

Unruh, H., Jr. and K. M. Unruh (1977), "Experimental determination of the Maxwell velocity distribution," Am. J. Phys. 45, 685-686.

Maruani, A. and J. -F. Fenech (1985), "Electronic simulation of Fermi-Dirac statistics," Eur. J. Phys. 6, 195-196.

-fluctuations, random processes, thermal noise and Brownian motion

To top?

Alexandrakis, G. C. (1978), "Determination of molecular size and Avogadro's number: a student experiment," Am. J. Phys. 46, 810-812.

Anger, C. D. and J. R. Prescott (1970), "A Monte Carlo simulation of Brownian motion in the freshman laboraotry," Am. J. Phys. 38, 716-719.

Barnes, G. (1973), "A Brownian motion demonstration using television," Am. J. Phys. 41, 278-280.

Basano, L. and P. Ottonello (1975), "Thermal noise as a source of Poisson distributions," Am. J. Phys. 43, 452-453.

Basano, L. and P. Ottonello (1986), "Laboratory demonstrations through the use of a general purpose correlator," Am. J. Phys. 54, 1039-1042.

Butler, C. O. (1977), "The roller randomizer," Am. J. Phys. 45, 1030-1032.

Callegaro, L. (2006), "Unified derivation of Johnson and shot noise expressions," Am. J. Phys. 74 (5), 438-40.

Clark, N. A. and J. H. Lunacek (1969), "A study of Brownian motion using light scattering," Am. J. Phys. 37, 853-854.

Clark, N. A., J. H. Lunacek, and G. B. Benedek (1970), "A study of Brownian motion using light scattering," Am. J. Phys. 38, 575-585.

Dekker, A. J., H. Hickamn, and T. M. Chen (1991), "A tutorial approach to the thermal noise in metals," Am. J. Phys. 59, 609-614.

Earl, J. A. (1965), "Apparatus notes: Brownian motion determination of Avogadro's number," Am. J. Phys. 33, No. 3 - xxi-xxii.

Earl, J. A. (1966), "Undergraduate expreiment on thermal and shot noise," Am. J. Phys. 34, 575-579.

Gillespie, D. T. (1996), "The mathematics of Brownian motion and Johnson noise," Am. J. Phys. 64 (3), 225-40.

Goldburg, W. I. (1999), "Dynamic light scattering," Am. J. Phys. 67 (12), 1152-60.

Harris, S. (1976), "Diffusion coefficient for a Brownian particle," Am. J. Phys. 44, 291-292.

Henry, R. W. (1973), "Random-walk model of thermal noise for students in elementary physics," Am. J. Phys. 41, 1361-1363.

Horne, M., P. Farago, and J. Oliver (1973), "An experiment to measure Boltzmann's constant," Am. J. Phys. 41, 344-348.

Kittel, P., W. R. Hackleman, and R. J. Donnelly (1978), "Undergraduate experiment on noise thermometry," Am. J. Phys. 46, 94-100.

Klipstein, W. M., J. S. Radnich, and S. K. Lamoreaux (1996), "Thermally excited liquid surface waves and their study through the quasielastic scattering of light," Am. J. Phys. 64 (6), 758-65.

Kraftmakher, Y. (1995), "Two student experiments on electrical fluctuations," Am. J. Phys. 63 (10), 932-5.

Kruglak, H. (1987), "Brownian movement: an improved TV demonstration," Am. J. Phys. 55, 955-956.

Kruglak, H. (1989), "Boltzman's constant: a laboratory experiment," Am. J. Phys. 57 (3), 216-7.

Livesey, D. L. and D. L. McLeod (1973), "An experiment on electronic noise in the freshman laboratory," Am. J. Phys. 41, 1364-1366.

Maslokovets, N. D. (1972), "Two new apparatuses for lecture demonstration [Brownian motion simulator and linear accelerator for charged sand]," Am. J. Phys. 40, 761-762.

Mathieson, E. (1977), "Derviation of noise formulas using Campbell's theorem," Am. J. Phys. 45, 1184-1186.

Nakroshis, P., M. Amoroso, J. Legere, and C. Smith (2003), "Measuring Boltzmann's constant using video microscopy of Brownian motion," Am. J. Phys. 71 (6), 568-73.

Passmore, J. L., B. C. Collings, and P. J. Collings (1995), "Autocorrelation of electrical noise: an undergraduate experiment," Am. J. Phys. 63 (7), 592-5.

Schumacher, R. T. (1986), "Brownian motion by light scattering revisited," Am. J. Phys. 54, 137-41.

Smith, W. E. (1965), "Elementary derivation of the thermal motion of galvanometers," Am. J. Phys. 33, 943-945.

Spiegel, D. R. and R. J. Helmer (1995), "Shot-noise measurements of the electron charge: an undergraduate experiment," Am. J. Phys. 63 (6), 554-60.

Stoller, R. (1976), "Viewing Brownian motion with laser light," Am. J. Phys. 44, 188.

Tunaley, J. K. E. (1975), "Classical microscopic models of Johnson noise," Am. J. Phys. 43, 446-448.

Unruh, H., Jr. (1980), "Experimental study of Brownian motion in the limit of small time intervals by means of an ideal gas simulator," Am. J. Phys. 48, 818-820.

Unruh, H., Jr., P. M. Maxton, and J. Schwartz (1979), "Experimental study of the Brownian motion of a harmonically bound particle," Am. J. Phys. 47, 827-828.

Verovnik, I. and A. Likar (1988), "A fluctuation interferometer," Am. J. Phys. 56, 231-234.

Vetterling, W. T. and M. Andelman (1979), "Comments on: Undergraduate experiment on noise thermometry [P. Kittel, W. R.; Hackelman, and R. J. Donnelly, Am. J. Phys. 46, 94 (1978)]," Am. J. Phys. 47, 382-384.

Washburn, S. (1979), "Conductance fluctuations in loops of gold," Am. J. Phys. 47, 1069-1078.

Bacon, M. E., W. J. Johnson, and M. A. Day (1986), "Experiments in differential light scattering of fluids," Eur. J. Phys. 7, 259-265.

Greczylo, T. and E. Dbowska (2005), "Finding viscosity of liquids from Brownian motion at students' laboratory," Eur. J. Phys. 26 (5), 827-33.

Katayama, Y. and R. Terauti (1996), "Brownian motion of a single particle under shear flow," Eur. J. Phys. 17 (3), 136-40.

Podini, P., R. Coisson, and S. Cattani (1989), "A simple, versatile, time-distributed events counter and statistical analyser," Eur. J. Phys. 10, 52-58.

Salmon, R., C. Robbins, and K. Forinash (2002), "Brownian motion using video capture," Eur. J. Phys. 23 (3), 249-53.

Ericson, T. J. (1988), "Electrical noise and the measurement of absolute temperature, Boltzmann's constant and Avogadro's number," PE 23, 112-116.

Kruglak, H. (1988), "Brownian motion - a laboratory experiment," PE 23, 306-309.

Webb, J. l. P. (1980), "Einstein and Brownian motion - student project," PE 15.

-phase transitions, PVT diagrams & vapor pressure

To top?

Anderson, P. M., III and A. E. Lord, Jr. (1978), "Demonstration of phase transition and properties of metallic glasses for undergraduates," Am. J. Phys. 46, 80-82.

Auerbach, D. (1995), "Supercooling and the Mpemba effect: when hot water freezes quicker than cold," Am. J. Phys. 63 (10), 882-885.

Bernstein, T. (1971), "A mechanical model of the spin-flop transition in antiferromagnets," Am. J. Phys. 39, 832-834.

Burstyn, H. P. and A. A. Bartlett (1975), "Critical point drying: application of the physics of the PVT surface to electron microscopy," Am. J. Phys. 43, 414-419.

Cromer, A. H. (1975), "Simple vapor-pressure experiment using a standard flexible-tube manometer," Am. J. Phys. 43, 925-926.

DeGeer, R. (1979), "Change of state demonstration," Am. J. Phys. 47, 287.

Drugowich de Felicio, J. R. and O. Hipolito (1985), "Spontaneous symmetry breaking in a simple mechanical model," Am. J. Phys. 53, 690-693.

Drumheller, J. E., D. Raffaelle, and M. Baldwin (1986), "An improved mechanical model to demonstrate the first- and second-order phase transitions of the easy axis Heisenberg antiferromagnet," Am. J. Phys. 54, 1130-1133.

Fisher, D. G. and W. T. Franz (1995), "Undergraduate laboratory demonstration of aspects of phase transitions using Curie temperature determination in amorphous ferromagnetic materials," Am. J. Phys. 63 (3), 2.

Fletcher, G. (1997), "A mechanical analog of first- and second-order phase transitions," Am. J. Phys. 65 (1), 74-81.

Fox, J. N., N. Gaggini, and J. K. Eddy (1986), "A study of the phase transition of a ferromagnetic material," Am. J. Phys. 54, 723-6.

Galles, C. D. (1979), "Revival of Black's experiment," Am. J. Phys. 47, 1008-1009.

Gesari, S., B. Irigoyen, and A. Juan (1996), "An experiment on the liquid-vapor equilibrium for water," Am. J. Phys. 64 (9), 1165-8.

Guyin, E. (1975), "Second order phase transitions: models and analogies," Am. J. Phys. 43, 877-.

Haase, D. G., A. Davidescu, G. Kerbaugh, and J. L. Eury (1978), "Simple experiment on superheated fluids," Am. J. Phys. 46, 853-854.

Henderson, G. and R. A. Robarts, Jr. (1978), "Heat of sublimation of I2 by laser photometry," Am. J. Phys. 46, 1139-1141.

Hendricks, J., D. Lee, and M. Rugheimer (1971), "Liquid nitrogen demonstration," Am. J. Phys. 39, 844.

Hugo, V. and B. R. Childers (1983), "Magnetic pendulum apparatus for analog demonstration of first-order and second-order phase transitions and tricritical points," Am. J. Phys. 51, 39-43.

Hunte, C., P. Gibbs, and U. Singh (2001), "An optical technique for studying phase transitions," Am. J. Phys. 69 (1), 91-2.

Jensen, H. (1968), "Freezing nitrogen: a modification," Am. J. Phys. 36, 919.

Jogad, M. S., D. Van Domelen, G. Westfall, W. Benenson, and S. D. Mahanti (2002), "Determination of melting temperature and heat of fusion of a solid using a computer-interfaced temperature probe," Am. J. Phys. 70 (1), 89-91.

Kell, G. S. (1969), "The freezing of hot and cold water," Am. J. Phys. 37, 564-565.

Lange, D., M. Sher, J. Sivillo, and R. Welsh (1993), "A hand-held demonstration of cosmological phase transitions," Am. J. Phys. 61 (11), 1049-50.

Lovett, D. R. and J. Tilley (1991), "Illustrating phase transitions with soap films," Am. J. Phys. 59, 415-416.

Mancuso, R. V. (2000), "A working mechanical model for first- and second-order phase transitions and the cusp catastrophe," Am. J. Phys. 68 (3), 271-7.

Mancuso, R. V. and G. A. Schreiber (2005), "An improved apparatus for demonstrating first- and second-order phase transitions: ball bearings on a rotating hoop," Am. J. Phys. 73 (4), 366-7.

Manosa, L., M. Bou, C. Calles, and A. Cirera (1996), "Low-cost differential scanning calorimeter," Am. J. Phys. 64 (3), 283-7.

Marega, E., Jr., S. C. Zilio, and L. Ioriatti (1990), "Electromechanical analog for Landau's theory of second-order symmetry-breaking transitions," Am. J. Phys. 58, 655-659.

Mayorga, A. and D. Thompson (1996), "A critical exponent of an aniseed-based liquor," Am. J. Phys. 64 (5), 621-3.

McCollum, D. C. and R. A. Morandi (1976), "The ice bomb," Am. J. Phys. 44, 893.

Menon, N. (1999), "A simple demonstration of a metastable state," Am. J. Phys. 67 (12), 1109-10.

Merga, E., Jr., S. C. Zilio, and L. Loriatti (1990), "Electromechanical analog for Landau's theory of second-order symmetry-breaking transitions," Am. J. Phys. 58, 655-9.

Miles, C. L. (1975), "Solid-solid phase transitions: a projection demonstration," Am. J. Phys. 43, 650-652.

Monwhea Jeng (2006), "The mpemba effect: when can hot water freeze faster than cold?," Am. J. Phys. 74 (6), 514-22.

Mowery, A. C. and D. T. Jacobs (1983), "Undergraduate experiment in critical phenomena: light scattering in a binary fluid mixture," Am. J. Phys. 51, 542-545.

Ngubane, S. B. and D. T. Jacobs (1986), "Undergraduate experiment in critical phenomena. II. The coexistance curve of a binary fluid mixture.," Am. J. Phys. 54, 542-6.

Nöldeke, C., W. Press, and A. Huller (1991), "A magnetic model for the demonstration of phase transitions and excitations in molecular crystals," Am. J. Phys. 59, 260-269.

Olenick, R. and T. Erber (1974), "A lambda transition of two magnetic dipoles," Am. J. Phys. 42, 338-339.

Pescetti, D. (1969), "Use of 'Monel metal' in laboratory experiments and lecture demonstrations on the Ferromagnetic Curie point," Am. J. Phys. 37, 334.

Schmidt, V. H. (1969), "Ferroelectricity experiment for advanced laboratory," Am. J. Phys. 37, 351-354.

Schmidt, V. H. and B. R. Childers (1984), "Magnetic pendulum apparatus for analog demonstration of first-order and second-order phase transitions and tricritical points," Am. J. Phys. 52, 39-43.

Sivardiere, J. (1985), "Mechanical model for a first-order phase transition," Am. J. Phys. 53, 363-365.

Sivardiere, J. (1986), "A mechanical model exhibiting a tricritical point," Am. J. Phys. 54, 172-177.

Smith, E. V. (1965), "An ac bridge method for the measurement of Curie points," Am. J. Phys. 33, 167.

Tennakone, K. and M. G. C. Peiris (1978), "Sublimation of moth balls," Am. J. Phys. 46, 418-419.

Thoma, M. H., M. Kretschmer, H. Rothermel, H. M. Thomas, and G. E. Morfill (2005), "The plasma crystal," Am. J. Phys. 73 (5), 420-4.

Tobochnik, J. (2001), "Resource letter CPPPT-1: Critical point phenomena and phase transitions," Am. J. Phys. 69 (3), 255-63.

Toftlund, H. (1987), "A rotary Curie point magnetic engine: a simple demonstration of a Carnot-cycle device," Am. J. Phys. 55, 48-49.

Tompson, C. W. and H. W. White (1983), "Latent heat and low-temperature heat capacity experiment for the general physics laboratory," Am. J. Phys. 51, 362-364.

Vali, G. (1971), "Supercooling of water and nucleation of ice (drop freezer)," Am. J. Phys. 39, 1125-1128.

Velasco, S., J. Faro, and F. L. Roman (2000), "An experiment for measuring the low temperature vapor line of water," Am. J. Phys. 68 (12), 1154-7.

White, L., Jr. (1966), "Demonstration analog of a critical-state phenomena," Am. J. Phys. 34, 68.

Winter, T. G. (2003), "The evaporation of a drop of mercury," Am. J. Phys. 71 (8), 783-6.

Bligh, P. H. and R. Haywood (1986), "Latent heat - its meaning and measurement," Eur. J. Phys. 7, 245-251.

Caporaloni, M. and C. Vitullo (2005), "A versatile implementation of the psychrometer technique as a learning opportunity in atmospheric physics courses," Eur. J. Phys. 26 (1), 97-106.

Corni, F. and M. Michelini (2006), "The Gibbs phase rule: an experimental path for its recognition and application," Eur. J. Phys. 27 (4), 793-804.

Guemez, J., C. Fiolhais, and M. Fiolhais (2002), "Reproducing Black's experiments: freezing point depression and supercooling of water," Eur. J. Phys. 23 (1), 83-91.

Guemez, J., C. Fiolhais, and M. Fiolhais (2005), "Quantitative experiments on supersaturated solutions for the undergraduate thermodynamics laboratory," Eur. J. Phys. 26 (1), 25-31.

Kraftmakher, Y. (1997), "Curie point of ferromagnets," Eur. J. Phys. 18 (6), 448-52.

Lewowski, T. and K. Woiniak (1997), "Measurement of Curie temperature for gadolinium: a laboratory experiment for students," Eur. J. Phys. 18 (6), 453-5.

Lovett, D. R. and J. Tilley (1990), "A soap film model illustrating phase transitions," Eur. J. Phys. 11, 208-214.

Maroto, J. A., F. J. de las Nieves, and M. Quesada-Perez (2004), "The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature," Eur. J. Phys. 25 (2), 297-301.

Pippard, A. B. (1980), "Demonstration experiments in critical behavior and broken symmetry," Eur. J. Phys. 1, 13-18.

Roux, S. (1987), "Simple demonstration of a critical exponent on a microcomputer," Eur. J. Phys. 8, 186-188.

Singh, U. and L. L. Moseley (1994), "A simple experimental technique for investigating phase transitions using the DC Kerr effect," Eur. J. Phys. 15 (3), 154-6.

Sivardiere, J. (1997), "Simple mechanical systems exhibiting instabilities," Eur. J. Phys. 18 (5), 384-7.

Sullivan, R. A. L., A. Dunk, P. J. Ford, R. N. Hampton, and J. C. Hopkins (1987), "Undergraduate laboraotry experiment top determine the Curie temperature of nickel using a resistance technique," Eur. J. Phys. 8, 300-305.

Ayres, A. J. P. (1970), "Some aspects of liquid behavior," PE 5, 113-118.

Bates, P. A. and A. M. Kent (1980), "An apparatus for the determination of Curie temperature," PE 15, 386-389.

Caporaloni, M. and R. Ambrosini (1992), "Humidity measurements: a psychromter suitable for on-line data acquisition," Phys. Educ. 27, 164-166.

de Paz, M. and M. Pilo (1990), "An experiment to measure the latent heat of vaporisation of liquid nitrogen," PE 25, 173-176.

Herreman, W. (1983), "Some physics demonstration experiments," PE 18, 47-49.

Livesley, D. M., C. J. Brixton, and A. M. Dingley (1984), "The rocking bucket - a simple example of crtical behavior," PE 19, 297-301.

-miscellaneous papers on thermodynamics & statistical physics

To top?

Anderson, D. L. (1966), "Resource letter ECAN-1 on the electronic charge and Avogadro's number," Am. J. Phys. 34, 2-8.

Evans, R. E. and A. A. Putnam (1966), "Rijke tube apparatus," Am. J. Phys. 34, 360-361.

Ferguson, J. L. (1978), "The many uses of disposable plastic hypodermic syringes - A shot in the arm for small equipment budgets," Am. J. Phys. 46, 1104-1106.

Hageseth, G. T. (1982), "Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: a student research project," Am. J. Phys. 50, 133-136.

Hendricks, J., D. Lee, and M. Rugheimer (1971), "Liquid nitrogen demonstration," Am. J. Phys. 39, 844.

Higbie, J. (1980), "Magdeburg 1979," Am. J. Phys. 48, 987-988.

Mullen, J. G. (1975), "An attempt at a personalized course in thermodynamics," Am. J. Phys. 43, 354-360.

Prentis, J. J. (2000), "Experiments in statistical mechanics," Am. J. Phys. 68 (12), 1073-83.

Salem, S. I. and et. al. (1988), "Determination of Avogadro's number (an experiment)," Am. J. Phys. 56, 466-7.

Styer, D. F. (1999), "A thermodynamic derivative means an experiment," Am. J. Phys. 67 (12), 1094-5.

Clauss, D. A., R. M. Ralich, and R. D. Ramsier (2001), "Hysteresis in a light bulb: connecting electricity and thermodynamics with simple experiments and simulations," Eur. J. Phys. 22 (4), 385-94.

De Izarra, C. and O. Vallee (1999), "A visual thermodynamical effect," Eur. J. Phys. 20 (4), 267-70.

Flament, C., L. Houillot, J. -C. Bacri, and J. Browaeys (2000), "Voltage generator using a magnetic fluid," Eur. J. Phys. 21 (2), 145-9.

Hassani, S. (2000), "Thermodynamics using coins," Eur. J. Phys. 21 (1), 41-7.

Evans, D. E. (1986), "Measurement of Boltzman's constant," PE 21, 296-299.

Freeman, M. (1979), "Cooler still - an answer," PE 14, 417-421.

Osborne, D. G. (1979), "Mind on ice," PE 14, 414-416.

Smith, B. A. (1980), "Wollaston's cryophorus precursor of the heat pipe," PE 15, 310-314.

To top?