03 Vibrations Oscillations Waves

Instructional Experiments on Vibrations and Waves

(and some related theory papers)

-harmonic oscillator

To top?

Allen, M. and E. J. Saxl (1972), "The period of damped simple harmonic motion," Am. J. Phys. 40, 942-944.

Armstrong, H. L. (1969), "The oscillating spring and weight - an experiment often misinterpreted," Am. J. Phys. 37, 447-448.

Asano, K. (1975), "On the theory of an electrostatic pendulum oscillator," Am. J. Phys. 43, 423-427.

Blair, J. M. (1975), "Precision timing applied to a driven mechanical oscillator," Am. J. Phys. 43, 1076-1078.

Blair, J. M. (1976), "Erratum: "Precision timing applied to a driven mechanical oscillator." J. Morris Blair [Am. J. Phys. 43, 1076 (1975)]," Am. J. Phys. 44, 1076-1078.

Bonera, G., C. I. Massara, and M. Villa (1976), "Simple experimental introduction to harmonic oscillations," Am. J. Phys. 44, 1121-1123.

Bonnet, J. (1991), "Springs and masses as a stationary wave problem," Am. J. Phys. 59, 239-242.

Calkin, M. G. (1993), "Motion of a falling spring," Am. J. Phys. 61 (3), 261-4.

Cayton, T. E. (1977), "The laboratory spring-mass oscillator: an example of parametric instability," Am. J. Phys. 45, 723-732.

Cushing, J. T. (1984), "The method of characteristics applied to the massive spring problem," Am. J. Phys. 52, 933-937.

Cushing, J. T. (1984), "The spring-mass system revisited," Am. J. Phys. 52, 925-933.

Driver, H. S. T. (1978), "Demonstration of transient beats," Am. J. Phys. 46, 1080-1082.

Dudley, J. D. and W. J. Strong (1987), "Why are resonant frequencies sometimes defineed in terms of zero reactance?," Am. J. Phys. 55, 610-614.

Eagle, B. A. and P. J. Jackson (1977), "The reflecting galvanometer as a damped, driven simple harmonic oscillator with recording facilities," Am. J. Phys. 45, 1113-1115.

Eckstein, S. G. (1993), "The computerized student laboratory: motion in a potential well," Am. J. Phys. 61 (4), 363-6.

Eckstein, S. G. and D. Fekte (1991), "Investigation of driven harmonic oscillations in the computerized student laboratory," Am. J. Phys. 59, 398-402.

Edwards, T. W. and R. A. Hultsch (1972), "Mass distribution and frequencies of a vertical spring," Am. J. Phys. 40, 445-449.

Feige, E., T. B. Clegg, and J. W. Poulton (1983), "A new optical transducer to measure damped harmonic motion," Am. J. Phys. 51, 954-955.

Fox, J. G. and J. Mahanty (1970), "The effective mass of an oscillating spring," Am. J. Phys. 38, 98-100.

Fyfe, F. M., G. Stroink, R. H. March, and M. G. Calkin (1981), "Large-scale spring experiment," Am. J. Phys. 49, 1074-1075.

Galloni, E. E. and M. Kohen (1979), "Influence of the mass of the spring on its static and dynamic effects," Am. J. Phys. 47, 1076-1078.

Gatland, I. R., Kahlscheuer Robert, and H. Menkara (1992), "Experiments utilizing an ultrasonic range finder," Am. J. Phys. 60, 451-454.

Gilson, J. E. and O. Boedtker (1969), "A damped harmonic motion experiment for use in undergraduate general physics laboratories," Am. J. Phys. 37, 1157-1158.

Glanz, P. K. (1979), "Note on energy changes in a spring," Am. J. Phys. 47, 1091-1092.

Grant, F. C. (1986), "Energy analysis of the conical-spring oscillator," Am. J. Phys. 54, 227-233.

Grauer, A. D. and C. E. Pittman (1973), "Experimentally determined functional relationships for small-amplitude oscillations," Am. J. Phys. 41, 1328-1331.

Greenberg, M. S., F. Fazio, M. Russotto, and A. Wilkosz (1986), "Using videotapes to study damped harmonic motion and to measure terminal speeds: a laboratory project," Am. J. Phys. 54, 897-904.

Greenhow, R. C. (1988), "A mechanical resonance experiment with fluid dynamical undercurrents," Am. J. Phys. 56, 352-7.

Greenslade, T. B., Jr. (1988), ""Atwood's" oscillator," Am. J. Phys. 56, 1151-3.

Greiner, M. (1980), "Elliptical motion from a ball and spring," Am. J. Phys. 48, 488-489.

Gruber, G. M. and E. E. Baart (1975), "Laboratory experiment on forced linear oscillations," Am. J. Phys. 43, 926-927.

Hageseth, G. T. (1969), "Forced oscillations and magnetic resonance in the introductory laboratory," Am. J. Phys. 37, 529-531.

Hayn, C. H. (1972), "Experiment in oscillatory motion," Am. J. Phys. 40, 779-780.

Heald, M. A. (1978), "How do you know when you've got critical damping," Am. J. Phys. 46, 989-993.

Heard, T. C. and N. D. Mewby, Jr. (1977), "Behavior of a soft spring," Am. J. Phys. 45, 1102-1106.

Horton, P. B. (1969), "Designing an 'acoustic suspension' speaker system in the general physics laboratory: a 'divergent' experiment," Am. J. Phys. 37, 1100-1103.

Hunt, J. L. (1985), "Forced and damped harmonic oscillator experiment using an accelerometer," Am. J. Phys. 53, 278-279 .

Jagla, E. A. and D. A. R. Dalvit (1991), " Null-length springs: some curious properties," Am. J. Phys. 59, 434-436.

Janssen, H. J., R. Serneels, L. Beerden, and E. L. M. Flerackers (1983), "Experimental demonstration of the resonance effect of an anharmonic oscillator," Am. J. Phys. 51, 655-658.

Karlow, E. A. (1994), "Ripples in the energy of a damped harmonic oscillator," Am. J. Phys. 62 (7), 634-6.

Lapidus, I. R. (1970), "Motion of a harmonic oscillator with sliding friction," Am. J. Phys. 38, 1360-1361.

Larson, L. E. (1987), "Interfacing the PASCO simple harmonic motion apparatus to a microcomputer," Am. J. Phys. 55, 667-668.

Leroy, V., M. Devaud, and J. -C. Bacri (2002), "The air bubble: experiments on an unusual harmonic oscillator," Am. J. Phys. 70 (10), 1012-19.

Libii, J. N. (2000), "Demonstration of viscous damping in the undergraduate laboratory," Am. J. Phys. 68 (2), 195-8.

Lipham, . J. G. and V. L. Pollak (1978), "Constructing a "misbehaving" spring," Am. J. Phys. 46, 110-111.

Macomber, H. K. (1981), "Experiment on impulsive excitation, resonance, and Fourier analysis of a harmonic oscillator circuit," Am. J. Phys. 49, 31-33.

Mak, S. Y. (1987), "The static effective mass of a slinky," Am. J. Phys. 55, 994-7.

Marchewka, A., D. S. Abbott, and R. J. Beichner (2004), "Oscillator damped by a constant-magnitude friction force," Am. J. Phys. 72 (4), 477-83.

McCarthy, L. (1996), "On the electromagnetically damped mechanical harmonic oscillator," Am. J. Phys. 64 (7), 885-91.

McDonald, F. A. (1980), "Deceptively simple harmonic motion: a mass on a spiral spring," Am. J. Phys. 48, 189-192.

McInerney, M. F. (1985), "Computer-aided experiments with the damped harmonic oscillator," Am. J. Phys. 53, 991-996.

Moore, G. I. (1994), "Simple mechanical forced damped oscillator with electronic output," Am. J. Phys. 62 (2), 140-3.

Ochoa, O. R. and N. F. Kolp (1997), "The computer mouse as a data acquisition interface: application to harmonic oscillators," Am. J. Phys. 65 (11), 1115-18.

Parkinson, M. (1965), "Spring mass correction," Am. J. Phys. 33, 341.

Piccard, R. D. (1986), "Argand diagrams, harmonic oscillators, and record-playing tonearms," Am. J. Phys. 54, 342-345.

Ricchiuto, A. and A. Tozzi (1982), "Motion of a harmonic oscillator with sliding and viscous friction," Am. J. Phys. 50, 176-179.

Santos, M. S., E. S. Rodrigues, and P. M. C. de Oliveira (1990), "Spring-mass chains: theoretical and experimental studies," Am. J. Phys. 58, 923-928.

Sears, F. W. (1969), "A demonstration of the spring-mass correction," Am. J. Phys. 37, 645-648.

Shanker, G., V. K. Gupta, B. Saraf, and N. K. Sharma (1985), "Temperature variation of modulus of rigidity and internal friction: an experiment with torsional oscillator," Am. J. Phys. 53, 1192-1195.

Smith, H. J. T. and K. A. Woolner (1984), "Inexpensive demonstration of an anharmonic oscillator," Am. J. Phys. 52, 800-801.

Stockman, H. E. (1965), "The electric bell as amplifier," Am. J. Phys. 33, 505.

Story, J. W. V. (1984), "Measurement of the mass of an object hanging from a spring," Am. J. Phys. 52, 78-80.

Tobolsky, A. V., I. L. Hopkins, and E. T. Samulski (1970), "Energy transients in harmonic oscillator systems," Am. J. Phys. 38, 226-235.

Turner, T. J. (1966), "Study of the simple harmonic oscillator by means of F-center absorption," Am. J. Phys. 34, 301-305.

Vandergrift, G. (1993), "Deducing the width of a Lorentzian resonance curve from experimental data," Am. J. Phys. 61 (5), 473-4.

Vermillion, R. E. (1970), "Random measurements on a classical harmonic oscillator," Am. J. Phys. 38, 381-382.

White, L., Jr. (1965), "Low-frequency circuit for driving a galvanometer in forced linear oscillation," Am. J. Phys. 33, 468-471.

Yan, C. C. (1982), "Generation of simple harmonic motions," Am. J. Phys. 50, 940-943.

Alexander, P. and E. Indelicato (2005), "A semiempirical approach to a viscously damped oscillating sphere," Eur. J. Phys. 26 (1), 1-10.

Bartos, J. and J. Musilova (2006), "Damping forces-a friend or a foe in explaining mechanical motion?," Eur. J. Phys. 27 (2), 383-92.

Bobillo-Ares, N. C. and J. Fernandez-Nunez (1995), "Two-dimensional harmonic oscillator on an air table," Eur. J. Phys. 16 (5), 223-7.

Donges, A. (1999), "Delta pulse response and frequency response of a damped oscillator," Eur. J. Phys. 20 (2), 69-74.

Grosu, I. and D. Ursu (1986), "Linear and nonlinear oscillations: a experiment for students," Eur. J. Phys. 7, 91-94.

Janssen, H. J., L. Beerden, and E. L. M. Flerackers (1984), "An experimental look at the resonant behavior of a nonlinear LC circuit," Eur. J. Phys. 5, 94-100.

Krupska, A. and M. Krupski (2003), "Study of the phase delay in the amplitude-modulated harmonic oscillator," Eur. J. Phys. 24 (4), 429-33.

MacLeod, A. M. and A. Watt (1980), "Physics demosntrations with a microcomputer," Eur. J. Phys. 1, 197-200.

Olejniczak, J. (1989), "Fourier analysis of the mechanical rectangular signal," Eur. J. Phys. 10, 42-44.

Tufillaro, N. B. (1990), "Torsional parametric oscillations in wires," Eur. J. Phys. 11, 122-124.

Aurora, T. S. and B. J. Brunner (1991), "Phase relationships in simple harmonic motion," Phys. Educ. 26, 382-384.

Barton, R. (1991), "Data logging in A-level physics," Phys. Educ. 26, 124-126.

Boving, R., J. Helleman, and R. De Wilde (1983), "Teaching damped and forced oscillations in the student laboratory," Phys. Educ. 18, 275-276.

Calvo, J. L., J. J. Pena, and A. L. Perez (1983), "Teaching oscillations with a small computer," Phys. Educ. 18, 172-174.

Duncan, A. J. (1984), "Forced harmonic motion of a a galvanometer," Phys. Educ. 19, 129-130.

Heddle, D. W. O. (1970), "Oscillators using ring magnets," Phys. Educ. 5, 244-245.

Herreman, W. (1983), "Some physics demonstration experiments," Phys. Educ. 18, 47-49.

Lancaster, G. (1983), "Measurements of some properties of non-Hookean springs," Phys. Educ. 18, 217-220.

McNeill, D. J. (1985), "Impulse and frequency response of a moving coil galvanometer," Phys. Educ. 20, 226-229.

Smith, B. A. (1979), "Forced oscillations," Phys. Educ. 14, 305-307.

-torsional oscillations

To top?

Butikov, E. I. (2004), "Square-wave excitation of a linear oscillator," Am. J. Phys. 72 (4), 469-476.

Shanker, G., V. K. Gupta, B. Saraf, and N. K. Sharma (1985), "Temperature variation of modulus of rigidity and internal friction: an experiment with torsional oscillator," Am. J. Phys. 53, 1192-1195.

Simpson, H. M. and B. E. Fortner (1987), "The dynamic shear modulus and internal friction of a fiber vibrating in the torsional mode," Am. J. Phys. 55, 44-6.

Tyagi, S. and A. E. Lord, Jr. (1979), "An inexpensive torsional pendulum apparatus for rigity modulus measurement," Am. J. Phys. 47, 632-633.

Tyagi, S. and A. E. Lord, Jr. (1980), "Simple and inexpensive apparatus for Young's modulus measurement," Am. J. Phys. 48, 205-206.

Milotti, E. (2001), "Nonlinear behaviour in a torsion pendulum," Eur. J. Phys. 22 (3), 239-48.

-pendulum

To top?

Abdel-Rahman, A-M. M. (1983), "The simple pendulum in a rotating frame," Am. J. Phys. 51, 721-724.

Araki, T. (1994), "Measurement of simple pendulum motion using flux-gate magnetometer," Am. J. Phys. 62 (6), 569-571.

Armstrong, H. L. (1976), "Effect of the mass of the cord on the period of a simple pendulum," Am. J. Phys. 44, 564-566.

Asano, K. (1975), "On the theory of an electrostatic pendulum oscillator," Am. J. Phys. 43, 423-427.

Basano, L. and P. Ottonello (1991), "Digital pendulum damping: the single-oscillation approach," Am. J. Phys. 59, 1018-1023.

Basano, L., P. Ottonello, and V. Palestini (1996), "Ripples in the energy of a damped oscillator: the experimental point of view," Am. J. Phys. 64 (10), 1326-1329.

Bazin, M. and P. Lucie (1981), "The pendulum reborn: time measurements in the teaching laboratory," Am. J. Phys. 49, 758-761.

Blitzer, L. (1965), "Inverted pendulum," Am. J. Phys. 33, 1076-1078.

Bulur, E., S. O. Anilturk, and A. M. Ozer (1996), "Computer analysis of pendulum motion: an alternative way of collecting experimental data," Am. J. Phys. 64 (10), 1333-1337.

Cadwell, L. H. and E. R. Boyko (1991), "Linearization of the simple pendulum," Am. J. Phys. 59, 979-981.

Candela, D., K. M. Martini, R. V. Krotkov, and K. H. Langley (2001), "Bessel's improved Kater pendulum in the teaching lab," Am. J. Phys. 69 (6), 714-20.

Crawford, F. S. (1975), "Damping of a simple pendulum," Am. J. Phys. 43, 276-277.

Crowell, A. D. (1981), "Motion of the Earth as viewed from the moon and the y-suspended pendulum," Am. J. Phys. 49, 452-454.

Digilov, R. M., M. Reiner, and Z. Weizman (2005), "Damping in a variable mass on a spring pendulum," Am. J. Phys. 73 (10), 901-5.

Dix, F. (1975), "A pendulum counter-timer using a photocell gate," Am. J. Phys. 43, 280.

Epstein, S. T. and M. G. Olsson (1977), "Comment on "Effect of the mass of the cord on the period of a simple pendulum" [H. L. Armostrong, Am. J. Phys. 44, 564 (1976)]," Am. J. Phys. 45, 672-673.

Falco, C. M. (1976), "Phase-space of a driven, damped pendulum (Josephson weak link)," Am. J. Phys. 44, 733-740.

Fulcher, L. P. and B. F. Davis (1976), "Theoretical and experimental study of the motion of the simple pendulum," Am. J. Phys. 44, 51-55.

Ganley, W. P. (1985), " SImple pendulum approximation," Am. J. Phys. 53, 73-76.

Gil, S. and D. E. Di Gregorio (2003), "Nonisochronism in the interrupted pendulum," Am. J. Phys. 71 (11), 1115-20.

Giltinan, D. A., D. L. Wagner, and T. A. Walkiewicz (1996), "The physical pendulum on a cylindrical support," Am. J. Phys. 64 (2), 144-6.

Gleiser, R. J. (1979), "Small amplitude oscillations of a quasi-ideal pendulum," Am. J. Phys. 47, 640-643.

Greenslade, T. B., Jr. and A. J. Owens (1980), "Reconstructed nineteenth-century experiment with physical pendula," Am. J. Phys. 48, 487-488.

Greenwood, M. S. (1987), "Using videotapes to study underdamped motion of a pendulum: a laboratory project," Am. J. Phys. 55, 645-648.

Hall, D. E. (1981), "Comments on Fourier analysis of the simple pendulum," Am. J. Phys. 49, 792.

Haque-Copilah, S. (1996), "Extremely simple demonstration of forced oscillation," Am. J. Phys. 64 (4), 507-8.

Helrich, C. and T. Lehman (1979), "A rolling pendulum bob: conservation of energy and partitioning of kinetic energy," Am. J. Phys. 47, 367-368.

Hugo, V. and B. R. Childers (1983), "Magnetic pendulum apparatus for analog demonstration of first-order and second-order phase transitions and tricritical points," Am. J. Phys. 51, 39-43.

Isenor, N. R. (1969), "Mechanical model of a q-switched laser," Am. J. Phys. 37, 1159-1160.

Jesse, K. E. (1980), "Kater pendulum modification," Am. J. Phys. 48, 785-786.

Kettler, J. E. (1995), "A variable mass physical pendulum," Am. J. Phys. 63 (11), 1049-51.

Klein, W. and P. Mittelstaedt (1997), "A simple experimental demonstration of the principle of equivalence," Am. J. Phys. 65 (4), 316-20.

Köpf, U. (1990), "Wilberforce's pendulum revisited," Am. J. Phys. 58, 833-7.

Kwasnoski, J. B. and R. S. Murphy (1984), "The classic pendulum experiment - on Jupiter or Saturn," Am. J. Phys. 52, 85.

Levy-Leblond, J. (1978), "Rock or roll: non-isochronous small oscillations (an example)," Am. J. Phys. 46, 106-107.

Livesey, D. L. (1987), "The precession of simple pendulum orbits," Am. J. Phys. 55, 618-621.

Marschall, L. A. (1981), "Driven "portulum": a rolling ball as a simple oscillating system," Am. J. Phys. 49, 557-561.

McKibben, J. L. (1977), "Tiple pendulum as an analog to three coupled stationary states," Am. J. Phys. 45, 1022-1026.

McNeill, D. J. (1965), "A simple low-frequency current source," Am. J. Phys. 33, 964-965.

Miller, B. J. (1974), "More realistic treatment of the simple pendulum without difficult mathematics," Am. J. Phys. 42, 298-303.

Mills, D. S. (1980), "The physical pendulum: a computer-augmented laboratory exercise," Am. J. Phys. 48, 314-316.

Mires, R. W. and R. D. Peters (1994), "Motion of a leaky pendulum," Am. J. Phys. 62 (2), 137-9.

Montgomery, C. G. (1978), "Pendulum on a massive cord," Am. J. Phys. 46, 411-412.

Nelson, R. A. and M. G. Olsson (1986), "The pendulum - rich physics from a simple system," Am. J. Phys. 54, 112-21.

Nicklin, R. C. (1985), "Erratum: "The digital pendulum" [Am. J. Phys. 52, 632 (1984)]," Am. J. Phys. 53.

Nicklin, R. C. and J. B. Rafert (1984), "The digital pendulum," Am. J. Phys. 52, 632-639.

Ochoa, O. R. and N. F. Kolp (1997), "The computer mouse as a data acquisition interface: application to harmonic oscillators," Am. J. Phys. 65 (11), 1115-18.

Peters, R. D. and J. A. Shepherd (1989), "A pendulum with adjustable trends in period," Am. J. Phys. 57, 535-9.

Priest, J. (1986), "Interfacing pendulums to a microcomputer," Am. J. Phys. 54, 953-5.

Quist, G. M. (1983), "The PET and pendulum: an application of microcomputers to the undergraduate laboratory," Am. J. Phys. 51, 145-149.

Sachs, A. (1976), "Blackwood pendulum experiment revisited," Am. J. Phys. 44, 182-183.

Schmidt, V. H. and B. R. Childers (1984), "Magnetic pendulum apparatus for analog demonstration of first-order and second-order phase transitions and tricritical points," Am. J. Phys. 52, 39-43.

Sheppard, D. MN. (1970), "Using one pendulum and a rotating mass to measure the universal gravitational constant," Am. J. Phys. 38, 380.

Squire, P. T. (1986), "Pendulum damping," Am. J. Phys. 54, 984-991.

Then, J. W. (1965), "Bifilar pendulum - an experimental study for the advanced laboratory," Am. J. Phys. 33, 545-547.

Then, J. W. and K. Chang (1970), "Experimental determination of moments of inertia by the bifilar pendulum method," Am. J. Phys. 38, 537-539.

Wagner, D. L., T. A. Walkiewicz, and D. A. Giltinan (1995), "The partial ring pendulum," Am. J. Phys. 63 (11), 1014-17.

Whitaker, R. J. (2001), "Harmonographs. I. Pendulum design," Am. J. Phys. 69 (2), 162-73.

Wickramasinghe, T. and R. Ochoa (2005), "Analysis of the linearity of half periods of the Lorentz pendulum," Am. J. Phys. 73 (5), 442-5.

Wikening, G. and J. Hesse (1981), "Electrical pendulum for educational purpose," Am. J. Phys. 49, 90-91.

Yorke, E. D. (1978), "Square-wave model for a pendulum with an oscillating suspension," Am. J. Phys. 46, 285-288.

Aggarwal, N., N. Verma, and P. Arun (2005), "Simple pendulum revisited," Eur. J. Phys. 26 (3), 517-23.

Anicin, B., D. M. Davidovic, and V. M. Babovic (1993), "On the linear theory of the elastic pendulum," Eur. J. Phys. 14, 132-135.

Bacon, M. E. and Do Dai Nguyen (2005), "Real-world damping of a physical pendulum," Eur. J. Phys. 26 (4), 651-5.

Bellomonte, L., I. Guastella, and R. M. Sperandeo-Mineo (2005), "Mechanical models of amplitude and frequency modulation," Eur. J. Phys. 26 (3), 409-22.

Butikov, E. I. (1999), "The rigid pendulum-an antique but evergreen physical model," Eur. J. Phys. 20 (6), 429-41.

Crook, A. W. (2001), "A tale of a clock," Eur. J. Phys. 22 (5), 549-60.

Delcour, J. and L. Hoffenbom (1988), "Mesure de temps par ordinateur," Eur. J. Phys. 9, 135-138.

Di Lieto, A., S. Fenicia, and P. Mancini (1991), "A computer assisted pendulum for didactics," Eur. J. Phys. 12, 51-52.

Doménech, A. and T. Doménech (1988), "Relationships between the scattering angles in pendulum collisions," Eur. J. Phys. 9, 116-122.

Gonzalez, M. I. and A. Bol (2006), "Controlled damping of a physical pendulum: experiments near critical conditions," Eur. J. Phys. 27 (2), 257-64.

Gough, W. (1983), "The period of a simple pendulum is not 2*pi*(L/g)**1/2," Eur. J. Phys. 4, 53-54.

Peters, R. D. (1997), "Automated Kater pendulum," Eur. J. Phys. 18 (3), 217-21.

Xiao-jun Wang, C. Schmitt, and M. Payne (2002), "Oscillations with three damping effects," Eur. J. Phys. 23 (2), 155-64.

Yoshida, S. and T. Findley (2005), "Analysis of a simple pendulum driven at its suspension point," Eur. J. Phys. 26 (3), 493-9.

Zonetti, L. F. C., A. S. S. Camargo, J. Sartori, D. F. de Sousa, and L. A. O. Nunes (1999), "A demonstration of dry and viscous damping of an oscillating pendulum," Eur. J. Phys. 20 (2), 85-8.

Boving, R., J. Helleman, and R. De Wilde (1983), "Teaching damped and forced oscillations in the student laboratory," Phys. Educ. 18, 275-276.

Madrid, A. C. (1983), "The period of a pendulum," Phys. Educ. 18, 271-272.

-Foucault pendulum & spherical pendulum

To top?

Crane, H. R. (1981), "Short Foucault pendulum: a way to eliminate the precession due to ellipticity," Am. J. Phys. 49, 1004-1006.

Crane, H. R. (1995), "Foucault pendulum"wall clock"," Am. J. Phys. 63 (1), 33-9.

Hilton, W. A. (1978), "The Foucault pendulum: a corridor demosntration," Am. J. Phys. 46, 436-438.

Khein, A. and D. F. Nelson (1993), "A persistent error in action-angle treatments of Hamiltonian mechanics," Am. J. Phys. 61 (2), 175-6.

Khein, A. and D. F. Nelson (1993), "Hannay angle study of the Foucault pendulum in action-angle variables," Am. J. Phys. 61, 170-174.

Khein, A. and D. F. Nelson (1993), "Hannay angle study of the Foucault pendulum in action-angle variables," Am. J. Phys. 61 (2), 170-4.

Kruglak, H. and R. Pittet (1980), "Portable, continuously operating Foucault pendulum," Am. J. Phys. 48, 419-420.

Kruglak, H., L. Oppliger, R. Pittet, and S. Steele (1978), "A short Foucault pendulum for a hallway exhibit," Am. J. Phys. 46, 438-440.

Miller, D. W. and G. W. Caudill (1966), "Driving mechanism for Foucault pendulum," Am. J. Phys. 34, 615-616.

Olsson, M. G. (1978), "The precessing spherical pendulum," Am. J. Phys. 46, 1118-1119.

Olsson, M. G. (1981), "Spherical pendulum revisited," Am. J. Phys. 49, 531-534.

Reynhardt, E. C., T. A. van der Walt, and L. Soskolsky (1986), "A modified Foucault pendulum for a corridor exhibit," Am. J. Phys. 54, 759-61.

Schaeffer, J. A. and C. T. Walker (1969), "Letter re: 'Conical pendulum experiment' [Am. J. Phys. 36, 55 (1968)]," Am. J. Phys. 37, 943.

Schulz-duBois, E. O. (1970), "Foucault pendulum experiment by Kamerlingh Onnes and degenerate perturbation theory," Am. J. Phys. 38, 173-188.

Sears, F. W. (1969), "Working model of a Foucault pendulum at intermediate latitudes," Am. J. Phys. 37, 1126-1127.

Weltner, K. (1979), "A new model of the Foucault pendulum," Am. J. Phys. 47, 365-366.

Baker, B. Am. J. Phys. 67 712-713

Bambill, H. R., M. R. Benito, and G. R. Garda (2004), "Investigation of conservation laws using a conical pendulum," Eur. J. Phys. 25 (1), 31-5.

Irons, F. E. (1990), "Concerning the non-linear behavior of the forced spherical pendulum including the dowsing pendulum," Eur. J. Phys. 11, 107-115.

Page, A., P. Candelas, and F. Belmar (2006), "Application of video photogrammetry to analyse mechanical systems in the undergraduate physics laboratory," Eur. J. Phys. 27 (3), 647-55.

Tritton, D. J. (1986), "Ordered and chaotic motion of a forced spherical pendulum," Eur. J. Phys. 7, 162-169.

Kruglak, H. and S. Steele (1984), "A 25cm continuously operating Foucault pendulum," Phys. Educ. 19, 294-296.

Mattila, J. O. (1991), "The Foucault pendulum as a teaching aid," Phys. Educ. 26, 120-123.

-coupled oscillators & pendula

To top?

Altshuler, E. and R. Garcia (2003), "Josephson junctions in a magnetic field: insights from coupled pendula," Am. J. Phys. 71 (4), 405-408.

Bender, P. A. (1985), "A fascinating resonant double pendulum," Am. J. Phys. 53, 1114.

Benenson, R. E. and B. B. Marsh (1988), "Coupled oscillations of a ball and a curve-track pendulum," Am. J. Phys. 56 (4), 345-8.

Berg, R. E. (1991), "Pendulum waves: a demonstration of wave motion using pendula," Am. J. Phys. 59, 186-187.

Berg, R., E. and T. S. Marshall (1991), "Wilberforce pendulum oscillations and normal modes," Am. J. Phys. 59, 32-38.

Blair, J. M. (1971), "Laboratory experiments involving the two-mode analysis of coupled oscillators," Am. J. Phys. 39, 555-557.

Cross, R. (2005), "A double pendulum swing experiment: in search of a better bat," Am. J. Phys. 73 (4), 330-9.

Curzon, F. L. (1984), "Classroom simulation of the coupled motion of piano strings," Am. J. Phys. 52, 137-139.

Davidovic, D. M., B. A. Anicin, and V. M. Babovic (1996), "The libration limits of the elastic pendulum," Am. J. Phys. 64 (3), 338-42.

Dobrovolskis, A. (1973), "Rubber band pendulum," Am. J. Phys. 41, 1103-1106.

Falk, L. (1978), "Recurrence effects in the parametric spring pendulum," Am. J. Phys. 46, 1120-1123.

Karioris, F. G. and K. S. Mendelson (1992), "A novel coupled oscillation demonstration," Am. J. Phys. 60, 508-513.

Köpf, U. (1990), "Wilberforce's pendulum revisited," Am. J. Phys. 58 (9), 833-7.

Lai, H. M. (1984), "On the recurrence phenomenon of a resonant spring pendulum," Am. J. Phys. 52, 219-223.

Lama, W. L., R. Jodoin, and L. Mandel (1972), "Superradiance in radiatively coupled tuning forks," Am. J. Phys. 40, 32-37.

Lee, S. M. (1970), "The double-simple pendulum problem," Am. J. Phys. 38, 536-537.

Levinson, D. A. (1977), "Natural frequencies of a spherical compound pendulum," Am. J. Phys. 45, 579.

McKibben, J. L. (1977), "Triple pendulum as an analog to three coupled stationary states," Am. J. Phys. 45, 1022-1026.

Moloney, M. J. (1978), "String-coupled pendulum oscillators: theory and experiment," Am. J. Phys. 46, 1245-1246.

Pedersen, N. F. and O. Soerensen, Hoffmann (1977), "The compound pendulum in intermediate laboratories and demonstrations," Am. J. Phys. 45, 994-998.

Romer, R. H. (1970), "A double pendulum "art machine"," Am. J. Phys. 38, 1116-1121.

Rusbridge, M. G. (1980), "Motion of the sprung pendulum," Am. J. Phys. 48, 146-151.

Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke (1992), "Chaos in a double pendulum," Am. J. Phys. 60, 491-499.

Spencer, R. L. and R. D. Robertson (2001), "Mode detuning in systems of weakly coupled oscillators," Am. J. Phys. 69 (11), 1191-7.

Wallach, D. L. and et. al. (1988), "The effect of mass of the center spring in one-dimensional coupled harmonic oscillators," Am. J. Phys. 56 (12), 1120-3.

Weigman, B. J. and H. F. Perry (1993), "Experimental determination of normal frequencies in coupled mechanical oscillator systems using fast Fourier transforms: an advanced undergraduate laboratory," Am. J. Phys. 61 (11), 1022-7.

Debowska, E., S. Jakubowicz, and Z. Mazur (1999), "Computer visualization of the beating of a Wilberforce pendulum," Eur. J. Phys. 20 (2), 89-95.

Greczylo, T. and E. Debowska (2002), "Using a digital video camera to examine coupled oscillations," Eur. J. Phys. 23 (4), 441-7.

Levesque, L. (2006), "Revisiting the coupled-mass system and analogy with a simple band gap structure," Eur. J. Phys. 27 (1), 133-45.

Monsoriu, J. A., M. H. Gimenez, J. Riera, and A. Vidaurre (2005), "Measuring coupled oscillations using an automated video analysis technique based on image recognition," Eur. J. Phys. 26 (6), 1149-55.

Richards, D. A. (1981), "Coupled oscillations," Phys. Educ. 16, 83.

-mechanical waves & general wave concepts

To top?

Berg, R. E. (1991), "Pendulum waves: a demonstration of wave motion using pendula," Am. J. Phys. 59, 186-187.

Cross, R. C. (1985), "Demonstration of wave propagation in a periodic structure," Am. J. Phys. 53, 563-567.

Dean, C. (1973), "Simple demonstration of the concept of group velocity," Am. J. Phys. 41, 1283-1284.

Hagelberg, M. P. (1978), "Phase and group velocity demonstration," Am. J. Phys. 46, 579-581.

Herreman, W. and H. Notebart (1983), "Circularly polarized waves: a mechanical demonstration," Am. J. Phys. 51, 91.

Kasper, J. E. and A. F. Benedek (1974), "A versatile wave phenomena device for use in demonstrations and in the laboratory," Am. J. Phys. 42, 754-759.

Mawdslwy, J. (1969), "Demonstrating phase velocity and group velocity," Am. J. Phys. 37, 842-843.

Morse, P. (1985), "Waves and targets: generalizations and specifics," Am. J. Phys. 53, 25-42.

Russell, G. A., R. R. Mankowski, and D. F. Fournier (1976), "Analog computer demonstration of traveling and standing waves," Am. J. Phys. 44, 284-288.

Vegors, S. H., Jr. (1975), "Beats and interference: a classroom demonstration," Am. J. Phys. 43, 1103-1105.

Wuchinich, D. (1969), "A simply constructed model for demonstrating wave propagation," Am. J. Phys. 37, 104-105.

Saitoh, A. (1984), "New longitudinal waves demonstrator," Phys. Educ. 19, 28-30.

-vibrating strings

To top?

Armstrong, H. L. (1982), "Forced vibration of strings," Am. J. Phys. 50, 1028-1031.

Barneby, T. A. (1976), "Note on "Normal modes of a compound string" [T. D. Rossing, Am. J. Phys. 43, 735 (1975)]," Am. J. Phys. 44, 485-486.

Barratt, C. (1984), "Resonance of string vibration," Am. J. Phys. 52, 1148-1150.

Beatty, M. F. and J. H. Lienhard, V. (1982), "Experimental investigation of the transverse vibrational frequency ratio for identical loaded and unloaded rubber strings," Am. J. Phys. 50, 113-119.

Blair, J. M. (1970), "A variation on Melde's experiment," Am. J. Phys. 38, 1317-1318.

Clay, F. P., Jr. and R. L. Kernell (1982), "Standing waves in a string driven by loudspeakers and signal generators," Am. J. Phys. 50, 910-912.

Clendenning, L. M. (1968), "A laboratory approach to an eigenvalue problem," Am. J. Phys. 36, 879-881.

Cromer, A. H. and D. Garelick (1975), "An inexpensive vibrator for Melde's standing-wave experiment," Am. J. Phys. 43, 926.

Cross, R. (1988), "A simple measurement of string motion," Am. J. Phys. 56, 1047-8.

Curzon, F. L. (1984), "Classroom simulation of the coupled motion of piano strings," Am. J. Phys. 52, 137-139.

Dale, E. B. (1976), "Classroom demonstration of the vibration of a bowed string," Am. J. Phys. 44, 1077-1079.

Elliott, J. A. (1980), "Intrinsic nonlinear effects in vibrating strings," Am. J. Phys. 48, 478-480.

Elliott, J. A. (1982), "Nonlinear resonance in vibrating strings," Am. J. Phys. 50, 1148-1150.

Ganci, S. (1984), "The standing wave pattern of a string in fluorescent light," Am. J. Phys. 52, 250-251.

Hall, D. E. (1987), "Optical measurement of string motion," Am. J. Phys. 55, 573.

Hornung, H. G. and M. J. Durie (1977), "Stiffness corrections for the vibration frequency of a stretched wire," Am. J. Phys. 45, 991-993.

Jewett, J. W., Jr. and J. V. Spadaro (1982), "Vibrating string resonance spectra on the oscilloscope," Am. J. Phys. 50, 570-571.

Juenker, D. W. (1976), "Energy and momentum transport in string waves," Am. J. Phys. 44, 94-99.

Kashy, E., D. A. Johnson, J. McIntyre, and S. L. Wolfe (1997), "Transverse standing waves in a string with free ends," Am. J. Phys. 65 (4), 310-13.

Kelly, R. E. (1975), "Temperature effects on the musical pitch of a stretched string," Am. J. Phys. 43, 996-1003.

King, A. L. (1974), "Oscillations of a loaded rubber band," Am. J. Phys. 42, 699-700.

McWilliams, A. S. (1975), "Observation of phase changes in the vibrating string experiment," Am. J. Phys. 43, 1112.

Meeks, W. (1965), "Driving mechanism for waves on strings," Am. J. Phys. 33, 340.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: Standing waves in a circle," Am. J. Phys. 33, No. 10 - xiv.

Molteno, T. C. and N. B. Tufillaro (2004), "An experimental investigation into the dynamics of a string," Am. J. Phys. 72 (9), 1157-69.

Mooney, P. M. (1976), "Another look at the vibrating string," Am. J. Phys. 44, 1006-1007.

Nahshol, D. (1965), "Simple string driver," Am. J. Phys. 33, 856.

Parmley, S., T. Zobrist, T. Clough, A. Perez-Miller, M. Makela, and R. Yu (1995), "Vibrational properties of a loaded string," Am. J. Phys. 63 (6), 547-53.

Rossing, T. D. (1975), "Normal modes of a compound string," Am. J. Phys. 43, 735-736.

Sandoval, J. L. and A. V. Porta (1985), "Fourier analysis for vibrating string's profile using optical detection," Am. J. Phys. 53, 1195-1203.

Shanker, G., V. K. Gupta, and N. K. Sharma (1985), "Normal modes and dispersion relations in a beaded string: an experiment for an undergraduate laboratory," Am. J. Phys. 53, 479-481.

Tufillaro, N. B. (1989), "Nonlinear and chaotic string vibrations," Am. J. Phys. 57, 408-414.

Bolwell, J. E. (1999), "How realistic is the D'Alembert plucked string?," Eur. J. Phys. 20 (5), 313-20.

Bolwell, J. E. (1999), "On Rayleigh's equations for the vibrations of a loaded flexible string," Eur. J. Phys. 20 (5), 305-12.

Hwu, Y. P. (1982), "Single beam time average holography on mechanical resonance of a string vibrator," Phys. Educ. 17, 131-132.

-slinkys

To top?

Blake, J. and L. N. Smith (1979), "The Slinky® as a model for transverse waves in a tenuous plasma," Am. J. Phys. 47, 807-808.

Crawford, F. S. (1987), "Erratum: "Slinky whistlers" [AM. J. Phys. 55, 130 (1987)]," Am. J. Phys. 55, 952.

Crawford, F. S. (1987), "Slinky whistlers," Am. J. Phys. 55, 130-134.

Crawford, F. S. (1991), "Pulse compression: dechirping of time-reversed slinky whistlers," Am. J. Phys. 59, 1050.

Mak, S. Y. (1987), "The static effective mass of a slinky," Am. J. Phys. 55, 994-7.

Ouseph, P. J. (1987), "Standing longitudinal waves," Am. J. Phys. 55, 666-667.

Vandegrift, G., T. Baker, J. DiGrazio, A. Dohne, A. Flori, R. Loomis, C. Steel, and D. Velat (1989), "Wave cutoff on a suspended slinky," Am. J. Phys. 57, 949-51.

Yound, R. A. (1993), "Longitudinal standing waves on a vertically suspended slinky," Am. J. Phys. 61, 353-360.

Young, R. A. (1993), "Longitudinal standing waves on a vertically suspended slinky," Am. J. Phys. 61 (4), 353-60.

-vibrating rods, membranes & plates

To top?

Casperson, L. W. and M. -A. Nicolet (1968), "Vibrations of a circular membrane," Am. J. Phys. 36, 669-671.

Comer, J. R., M. J. Shepard, P. N. Henriksen, and R. D. Ramsier (2004), "Chladni plates revisited," Am. J. Phys. 72 (10), 1345-6.

Davis, T. J. and G. I. Opat (1983), "Elastic vibrations of rods and Poisson's ratio," Am. J. Phys. 51, 161-163.

Daw, H. A. and R. J. Liefeld (1998), "Driven singing aluminum rods," Am. J. Phys. 66 (7), 639-41.

Deutsch, B. M., A. R. Robinson, R. J. Felce, and T. R. Moore (2004), "Nondegenerate normal-mode doublets in vibrating flat circular plates," Am. J. Phys. 72 (2), 220-5.

Ficken, G. W., Jr. (1976), "Center of percussion demonstration," Am. J. Phys. 44, 789.

Jeong, T. H., b. Donnally, and Committee on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: demonstration of vibrating membrane using soap films," Am. J. Phys. 33, No. 11 - xvii.

Kautz, A. D. (1980), "Experiment on the vibration of a plate," Am. J. Phys. 48, 358-361.

Manzer, A. and H. J. T. Smith (1972), "Oscillations of a circular membrane," Am. J. Phys. 40, 186-188.

Mascarenhas, F. M. F., C. M. Spillmann, J. F. Lindner, and D. T. Jacobs (1998), "Hearing the shape of a rod by the sound of its collision," Am. J. Phys. 66 (8), 692-7.

Menou, K., B. Audit, X. Boutillon, and H. Vach (1998), "Holographic study of a vibrating bell: An undergraduate laboratory experiment," Am. J. Phys. 66 (5), 380-5.

Moloney, M. J. (2005), "Measuring and calculating bar flexural vibration frequencies," Am. J. Phys. 73 (5), 439-41.

Morales, A., L. Gutierrez, and J. Flores (2001), "Improved eddy current driver-detector for elastic vibrations," Am. J. Phys. 69 (4), 517-22.

Naba, N. (1972), "Observation of longitudinal vibration of metal rods," Am. J. Phys. 40, 1339-1340.

Ostdiek, V. J. and T. D. Brady (1983), "Chladni figures on a tympani head," Am. J. Phys. 51, 474.

Ouseph, P. J. (1991), "Chladni plates for overhead projectors," Am. J. Phys. 59, 665-666.

Panek, L. W. (1980), "Demonstration of the first overtone transverse vibrational mode in a stiff solid bar," Am. J. Phys. 48, 786.

Rhyner, C. R. (1970), "Measurement of the speed of sound in metal rods," Am. J. Phys. 38, 1152-1153.

Rossing, T. D. (1982), "Chladni's law for vibrating plates," Am. J. Phys. 50, 271-274.

Simpson, H. M. and P. J. Wolfe (1975), "Young's modulus and internal damping in a vibrating rod," Am. J. Phys. 43, 506-508.

Turvey, K. (1990), "An undergraduate experiment on the vibration of a cantilever and its application to the determination of Young's modulus," Am. J. Phys. 58, 483-7.

Vandegrift, G. (1997), "Transverse bending waves and the breaking broomstick demonstration," Am. J. Phys. 65 (6), 505-10.

Britton, W. G. B., R. W. B. Stephens, and S. R. Wootton (1985), "An experimental investigation of pulse propagation in a dispersive medium," Eur. J. Phys. 6, 188-194.

Leleux, P. (1991), "On the longitudinal vibration in metal rods," Eur. J. Phys. 12, 303-304.

Turvey, K. (1989), "Investigation of the frequencies of in-plane modes of a thin circular singly clamped ring with application to young's modulus determination," Eur. J. Phys. 10.

Haine, T. W. (1990), "An experiment to investigate mechanical resonance," Phys. Educ. 25, 221-223.

-vibrating structures and mechanical resonance

To top?

Annett, C. H. (1979), "Observation of the first overtone mode in an automobile whip antenna," Am. J. Phys. 47, 820-822.

Apfel, R. E. (1985), ""Whispering" waves in a wineglass," Am. J. Phys. 53, 1070-1073.

Ayers, R. D. (1981), "Mechanical resonance of a plastic strip," Am. J. Phys. 49, 235-237.

Bishir, D. (1994), "Vibrating structure," Am. J. Phys. 62 (6), 571-572.

Buschert, J. R. a. B., N. (1997), "An inexpensive sensor for small motions," Am. J. Phys. 65 (4), 350-352.

Dorner, R., L. Kowalski, and M. Stein (1995), "Mechanical resonance displaying changes in phase to large audiences," Am. J. Phys. 63 (4), 364-9.

Horton, P. B. (1969), "Designing an 'acoustic suspension' speaker system in the general physics laboratory: a 'divergent' experiment," Am. J. Phys. 37, 1100-1103.

Jones, C. C. (1995), "A mechanical resonance apparatus for undergraduate laboratories," Am. J. Phys. 63 (3), 232-6.

Mazur, P. and F. A. Blood, Jr. (1972), "Comparison of normal modes of an end-weighted discrete and continuous linear chain," Am. J. Phys. 40, 1694-1696.

Nachman, P., P. M. Pellegrino, and A. C. Bernstein (1997), "Mechanical resonance detected with a Michelson interferometer," Am. J. Phys. 65 (5), 441-3.

Oakes, M. E. and D. Creech (1977), "Exposing normal modes," Am. J. Phys. 45, 883.

Prigo, R. B. and P. K. Hansma (1984), "Lampost resonance demonstration apparatus," Am. J. Phys. 52, 662-664.

Rueckner, W., D. Goodale, D. Rosenberg, S. Steel, and D. Tavilla (1993), "Lecture demonstration of wineglass resonances," Am. J. Phys. 61 (2), 184-6.

Santos, M. S., E. S. Rodrigues, and P. M. C. de Oliveira (1990), "Spring-mass chains: theoretical and experimental studies," Am. J. Phys. 58, 923-928.

Skeldon, K. D., V. J. Nadeau, and C. Adams (1998), "The resonant excitation of a wineglass using positive feedback with optical sensing," Am. J. Phys. 66 (10), 851-60.

Vandergrift, G. (1993), "Deducing the width of a Lorentzian resonance curve from experimental data," Am. J. Phys. 61 (5), 473-4.

Yih-Yuh Chen (2005), "Why does water change the pitch of a singing wineglass the way it does?," Am. J. Phys. 73 (11), 1045-9.

Zaspel, C. E., T. J. Dehl, and C. M. McKennan (1996), "A mechanical resonance apparatus from the Cenco centripetal force apparatus," Am. J. Phys. 64 (4), 506-7.

Pippard, A. B. (1990), "The elastic arch and its modes of instability," Eur. J. Phys. 11, 359-365.

-miscellaneous papers on vibrations, oscillations & waves

To top?

Armstrong, H. L. (1965), "On dynamic balancing of reciprocating objects," Am. J. Phys. 33, 343.

Belansky, R. H. and K. H. Wanser (1993), "Laser Doppler velocimetry using a bulk optic Michelson interferometer: a student laboratory experiment," Am. J. Phys. 61 (11), 1014-1019.

Eggert, J. H. (1997), "One-dimensional lattice dynamics with periodic boundary conditions: an analog demonstration," Am. J. Phys. 65 (2), 108-16.

Flaten, J. A. and K. A. Parendo (2001), "Pendulum waves: A lesson in aliasing," Am. J. Phys. 69 (7), 778-82.

Flores, J., G. Solovey, and S. Gil (2003), "Variable mass oscillator," Am. J. Phys. 71 (7), 721-5.

Guemez, J., R. Valiente, C. Fiolhais, and M. Fiolhais (2003), "Experiments with a sunbird," Am. J. Phys. 71 (12), 1264-7.

Guemez, J., R. Valiente, C. Fiolhais, and M. Fiolhais (2003), "Experiments with the drinking bird," Am. J. Phys. 71 (12), 1257-63.

Luerssen, D., N. Easwar, A. Malhotra, L. Hutchins, K. Schulze, and B. Wilcox (2004), "A demonstration of phonons that implements the linear theory," Am. J. Phys. 72 (2), 197-202.

Mitchell, M. W. and R. Y. Chiao (1998), "Causality and negative group delays in a simple bandpass amplifier," Am. J. Phys. (USA) 66 (1), 14-19.

Pecori, B., G. Torzo, and A. Sconza (1999), "Harmonic and anharmonic oscillations investigated by using a microcomputer-based Atwood's machine," Am. J. Phys. 67 (3), 228-35.

Whitaker, R. J. (1993), "The Wheatstone kaleidophone," Am. J. Phys. 61 (8), 722-8.

Whitaker, R. J. (2001), "Harmonographs. I. Pendulum design," Am. J. Phys. 69 (2), 162-73.

Whitaker, R. J. (2001), "Harmonographs. II. Circular design," Am. J. Phys. 69 (2), 174-83.

Carnero, C., P. Carpena, and J. Aguiar (1997), "The rolling body paradox: an oscillatory motion approach," Eur. J. Phys. 18 (6), 409-16.

To top?