01 Classical Mechanics

Instructional Experiments on Classical Mechanics

(and some related theory papers)

Topics

-electronic timers & spark timers for mechanics measurements

To top?

Anderson, G. A. (1980), "Solid-state modification for the Cenco spark timer," Am. J. Phys. 48, 989-990.

Arlotto, J. J. (1979), "Spark recording on a linear air track," Am. J. Phys. 47, 200-201.

Blatt, J. H. (1972), "A high-precision inexpensive photodiode gate for electronic timers," Am. J. Phys. 40, 1168-1169.

Boyd, M. J. (1977), "Photo transistor adapter for timing systems," Am. J. Phys. 45, 881-882.

Boys, D. W. and W. Mykolajenko (1980), "An improved spark-timer circuit," Am. J. Phys. 48, 321-322.

Brandan, M. E., M. Gutierrez, R. Labbe, and A. Menchaca-Rocha (1984), "Measurement of the terminal velocity in air of a ping-pong ball using a time-to-amplitude converter in the millisecond range," Am. J. Phys. 52, 890-893.

Burris, A. (1972), "Double spark source for linear air track," Am. J. Phys. 40, 1864-1866.

Carr, H. Y. and R. L. Darling (1981), "Mechanics multitimer for lecture demonstrations," Am. J. Phys. 49, 701.

Casavant, D. P. (1976), "Centralized blower and timing systems for air tracks," Am. J. Phys. 44, 493.

Chinitz, W. (1975), "Timing device for the linear air track," Am. J. Phys. 43, 375-376.

Cohen, H. and D. Horvath (1988), "A timing circuit for air track experiments," Am. J. Phys. 56, 950-3.

Dix, F. (1975), "A pendulum counter-timer using a photocell gate," Am. J. Phys. 43, 280.

Doty, D. (1979), "Inexpensive automatic time keeping in the undergraduate laboratory," Am. J. Phys. 47, 751-752.

DuPuy, D. L. (1983), "A versatile digital timer circuit," Am. J. Phys. 51, 183-185.

Eaton, B. G. (1972), "Spark timing for the Eduquip air track," Am. J. Phys. 40, 1549-1550.

Edgar, A. (1991), "A low-cost timer for free-fall experiments," Am. J. Phys. 59, 568-569.

Elmore, W. C. (1972), "A solid-state spark timing circuit," Am. J. Phys. 40, 487-488.

Erskine, J. C. (1969), "A transistorized spark time for the undergraduate laboratory," Am. J. Phys. 37, 563-564.

Evora, C., D. Mendes, and E. C. Silva (1982), "Electronic multitimer for mechanics experiments," Am. J. Phys. 50, 381-2.

Flaherty, F. A. (1993), "Interfacing sensors to digital stopwatches," Am. J. Phys. 61, 278-279.

Fontanelli, F., L. Repetto, and R. Chittofrati (2002), "A simple instrument for measuring time intervals with subnanosecond resolution," Am. J. Phys. 70 (12), 1234-6.

Good, R. H. (1968), "Double sparker for linear air track," Am. J. Phys. 36, 761.

Good, R. H. (1969), "Note on double sparker," Am. J. Phys. 37, 455-456.

Gregson, P. H. and W. P. Lonc, S. J. (1976), "Light-operated millisecond timers," Am. J. Phys. 44, 803.

Harmon, G. S. and D. H. Blanchard (1984), "A two-dimensional kinematics experiment using a microcomputer interval timer," Am. J. Phys. 52, 280-281.

Harrell, J. W., Jr., L. Junklin, and D. Whitcomb (1987), "A photogate timer for measuring the speed of a bullet," Am. J. Phys. 55, 856-7.

Holland, M. W. (1969), "A meter to measure speeds of objects on an air track," Am. J. Phys. 37, 327-329.

Huang, W. F., P. Wolff, and Schwienhart (1987), "A multiphotogate timer system," Am. J. Phys. 55, 1050-3.

Kolenkow, R. J. (1966), "Electronic spark timer," Am. J. Phys. 34, 536.

Mickle, K. (1973), "A wide range laboratory spark timer," Am. J. Phys. 41, 743-744.

Mink, L. A. and C. A. Hughes (1993), "Low-cost easily constructed dual-photogate timer," Am. J. Phys. 61 (10), 951-3.

Mosca, E. P. and Ertel John P. (1989), "Photogates: an instrument evaluation," Am. J. Phys. 57, 840-4.

Otto, F. B. (1969), "Solid-state spark timer," Am. J. Phys. 37, 326.

peterson, F. C. (1982), "Inexpensive and ubiquitous spark recording paper," Am. J. Phys. 50, 1172-3.

Rafert, J. B. and R. C. Nicklin (1983), "A microcomputer air-track timer," Am. J. Phys. 51, 763-764.

Rendell, D. H. and E. W. Grundke (1969), "Double sparker for linear air track," Am. J. Phys. 37, 1065.

Rodano, S. J. and J. J. D'Amario (1976), "Chronograph for measuring projectile velocities," Am. J. Phys. 44, 711-712.

Rossing, T. D. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: interval timing with a scaler," Am. J. Phys. 33, No. 6 - v.

Schwarz, G. and Committee on Apparatus of the AAPT, Eds. (1966), "Apparatus notes: measurement of short time intervals," Am. J. Phys. 34, No. 8 - iv.

Williams, T. S. and Committee on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: scaler becomes photcell timer," Am. J. Phys. 33, No. 2 - xiii.

Wood, G. T. (1974), "A light flasher and its use in the elementary mechanics laboratory," Am. J. Phys. 42, 387-391.

Everett, G. E. and R. L. Wild (1979), "Inexpensive time-of-flight velocity measurements," Am. J. Phys. 47, 426-428.

Caporaloni, M. and R. Ambrosini (1999), "GPS and timing: didactic applications on how to choose the best clock," Eur. J. Phys. 20 (4), 243-52.

Caporaloni, M. and R. Ambrosini (2001), "Time synchronization measurements with a combination of a GPS receiver and the Internet," Eur. J. Phys. 22 (4), 351-9.

Caporaloni, M. and R. Ambrosin (2002), "How closely can a personal computer clock track the UTC timescale via the Internet?," Eur. J. Phys. 23 (4), 17-21.

MacLeod, A. M. and W. R. Hogg (1980), "A digital timer with memory and its application to dynamics experiments," Phys. Educ. 15, 87-90.

-ultrasonic rangefinders & other position trackers

To top?

Anway, A. (1972), "Inexpensive velocity meter," Am. J. Phys. 40, 202-203.

Crummett, W. P. and A. B. Western (1987), "Two glider ultrasonic ranging module interface for the Apple IIe," Am. J. Phys. 55, 658-9.

Duchesne, B., C. W. Fischer, and C. G. Gray (1991), "Inexpensive and accurate position tracking with an ultrasonic ranging module and a personal computer," Am. J. Phys. 59, 998-1002.

Gatland, I. R., Kahlscheuer Robert, and H. Menkara (1992), "Experiments utilizing an ultrasonic range finder," Am. J. Phys. 60, 451-454.

Western, A. B. and W. P. Crummett (1986), "Ultrasonic ranging module interface and air-track kinetmatics for the Apple IIe," Am. J. Phys. 54, 894-7.

Wood, G. T. (1974), "A remote-position analyzer with electronic output," Am. J. Phys. 42, 952-957.

Basano, L. and P. Ottonello (1980), "Optoelectronic apparatus for classroom demonstrations of mechanical laws," Am. J. Phys. 48, 85-86.

- kinematics & video motion analysis

To top?

Beichner, R. J. (1996), "The impact of video motion analysis on kinematics graph interpretation skills," Am. J. Phys. 64 (10), 1272-1277.

Benenson, W. and W. Bauer (1993), "Frame grabbing techniques in undergraduate physics education," Am. J. Phys. 61 (9), 848-851.

Kasas, S., G. Dumas, and G. Dietler (2000), "Impact cratering study performed in the laboratory without a fast recording camera," Am. J. Phys. 68 (8), 771-3.

Kasas, S., G. Dumas, and G. Dietler (2003), "Fast processes imaging device," Am. J. Phys. 71 (5), 493-4.

Linthorne, N. P. (2001), "Analysis of standing vertical jumps using a force platform," Am. J. Phys. 69 (11), 1198-204.

Riera, J., J. A. Monsoriu, M. H. Gimenez, J. L. Hueso, and J. R. Torregrosa (2003), "Using image recognition to automate video analysis of physical processes," Am. J. Phys. 71 (10), 1075-9.

Salumbides, E. J., J. Maristela, A. Uy, and K. Karremans (2002), "A vision-based motion sensor for undergraduate laboratories," Am. J. Phys. 70 (8), 868-71.

Williamson, J. C., R. O. Torres-Isea, and C. A. Kietzing (2000), "Analyzing linear and angular momentum conservation in digital videos of puck collisions," Am. J. Phys. 68 (9), 841-7.

Wagner, W. S. (1986), "Automobile deceleration force by the coast-down method," Am. J. Phys. 54 (11), 1049-51.

Thornton, R. K. and D. R. Sokoloff (1990), "Learning motion concepts using real-time microcomputer-based laboratory tools," Am. J. Phys. 58 (9), 858-67.

Soules, J. A. (1972), "Full-scale demonstration of acceleration," Am. J. Phys. 40, 1173.

petit, N. J. and P. A. Johnson (1979), "Uniform acceleration demonstration," Am. J. Phys. 47, 287-288.

Harmon, G. S. and D. H. Blanchard (1984), "A two-dimensional kinematics experiment using a microcomputer interval timer," Am. J. Phys. 52, 280-281.

Fernandez, J. M. V., J. J. P. Bernal, M. A. R. Bueno, M. G. Delgado, and b. M. Balsera (1981), "Teaching kinematics with electronic equipment," Am. J. Phys. 49, 483-488.

Hey, J. D., L. Kolb, and R. Piasecki (2004), "Falling faster than in free fall?," Eur. J. Phys. 25 (1), 63-71.

Page, A., P. Candelas, and F. Belmar (2006), "Application of video photogrammetry to analyse mechanical systems in the undergraduate physics laboratory," Eur. J. Phys. 27 (3), 647-55.

Dengler, R. and K. Luchner (1989), "Object recording by video and computer: a new way to collect and analyse motion data," Eur. J. Phys. 10, 106-110.

-air tracks, carts & one-dimensional collisions

To top?

Andereck, B. S. (1999), "Measurement of air resistance on an air track," Am. J. Phys. 67 (6), 528-533.

Arlotto, J. J. (1979), "Spark recording on a linear air track," Am. J. Phys. 47, 200-201.

Bacon, M. E., B. Stevenson, and C. G. S. Baines (1998), "Impulse and momentum experiments using piezo disks," Am. J. Phys. 66 (5), 445-448.

Barnes, G. (1974), "Two simple tricks with air-rail gliders," Am. J. Phys. 42, 707.

Barrett, W. L. and W. Renoud (1973), "Relative motion car for the air track," Am. J. Phys. 41, 580-581.

Bartlett, A. A. (1975), "Modified ballistic car demonstration," Am. J. Phys. 43, 732-733.

Bates, H. E. (1977), "Using the Doppler effect in the microwave region to study motion on a linear air track," Am. J. Phys. 45, 711-715.

Bednarek, S. (1992), "Magnetic track for experiments in mechanics," Am. J. Phys. 60, 664-666.

Bischoff, V. and S. Haun (1975), "The air track: a device for quickly checking flatness and improving the adjustment procedure," Am. J. Phys. 43, 840-841.

Blatt, J. H. and D. J. Larson (1977), "Conservation of momentum demonstration with direct velocity readout for use with linear air track," Am. J. Phys. 45, 684-685.

Burris, A. (1969), "Inelastic collision device," Am. J. Phys. 37, 941.

Burris, A. (1972), "Double spark source for linear air track," Am. J. Phys. 40, 1864-1866.

Butler, C. O. a. B., D. (1994), "The photodiode array camera: a new method for acquiring airtrack data," Am. J. Phys. 62 (5), 444-450.

Caplan, L. and R. Pruitt (1972), "Resolution of forces using a linear air track," Am. J. Phys. 40, 1172.

Carrell, J. C. (1972), "A linear air track demonstration of the Mössbauer effect," Am. J. Phys. 40, 1336-1337.

Casavant, D. P. (1976), "Centralized blower and timing systems for air tracks," Am. J. Phys. 44, 493.

Chinitz, W. (1975), "Timing device for the linear air track," Am. J. Phys. 43, 375-376.

Chonacky, N. J., L. D. Matthews, and J. W. Snyder (1971), "Improving the small hole air track and table," Am. J. Phys. 39, 340.

Christensen, F. E. and Committee on Apparatus of the AAPT (1968), "Inelastic collisions," Am. J. Phys. 36, 851.

Cohen, H. and D. Horvath (1988), "A timing circuit for air track experiments," Am. J. Phys. 56, 950-3.

Cook, C. L. (1990), "Improved version of a linear momentum conservation experiment," Am. J. Phys. 58, 599-600.

Crummett, W. P. and A. B. Western (1987), "Two glider ultrasonic ranging module interface for the Apple IIe," Am. J. Phys. 55, 658-9.

DeJong, M. L. and B. E. Leonard (1972), "Demonstration of Boyle's law in an air track," Am. J. Phys. 40, 1342.

DeYoung, P. A. and B. Mulder (2002), "Studying collisions in the general physics laboratory with quadrature light emitting diode sensors," Am. J. Phys. 70 (12), 1226-30.

Duchesne, B., C. W. Fischer, and C. G. Gray (1991), "Inexpensive and accurate position tracking with an ultrasonic ranging module and a personal computer," Am. J. Phys. 59, 998-1002.

Eaton, B. G. (1972), "Spark timing for the Eduquip air track," Am. J. Phys. 40, 1549-1550.

Eckstein, S. G. (1993), "The computerized student laboratory: motion in a potential well," Am. J. Phys. 61, 363-366.

Fischbach, F. (1993), "Adapting a small rocket engine to an air track," Am. J. Phys. 61 (1), 1154.

Fox, J. N. and D. G. Reiber (1973), "Magnetic induction and the linear air track," Am. J. Phys. 41, 75-77.

Gauthier, N. (1980), "Viscous damping and restitution coefficients for a glider on an inclined linear air track," Am. J. Phys. 48, 79-81.

Gee, M. J. (1969), "Mechanical demonstration of inelastic collisions and excited states," Am. J. Phys. 37, 562-563.

Gould, L. I. and H. Workman (1988), "Air track with a distributed infrared detector system," Am. J. Phys. 56, 739-44.

Grauer, A. D. and C. E. Pittman (1973), "Experimentally determined functional relationships for small-amplitude oscillations," Am. J. Phys. 41, 1328-1331.

Gruebel, R., J. Dennis, and L. Choate (1971), "A variable coeficient of restitution experiment on a linear air track," Am. J. Phys. 39, 447-449.

Guptil, E. W., G. Stroink, and R. H. March (1977), "A lecture demonstration of linear motion using the airtrack," Am. J. Phys. 45, 1005-1006.

Hart, G. and B. Jensen (1982), "Magnetic-coupled longitudinal analog," Am. J. Phys. 50, 569-570.

Herrmann, F. and M. Schubart (1989), "Measuring momentum without the use of p=mv in a demonstration experiment," Am. J. Phys. 57, 858-859.

Herrmann, F. and P. Schmalzle (1981), "Simple explanation of a well-known collision experiment," Am. J. Phys. 49, 761-764.

Hessel, R., A. C. perinotto, R. A. M. Alfaro, and A. A. Freschi (2006), "Force-versus-time curves during collisions between two identical steel balls," Am. J. Phys. 74 (3), 176-9.

Howland, L. P. (1965), "Demonstrations of waves on an air track," Am. J. Phys. 33, 269-279.

Husman, M., L. Schwieters, M., and H. Rabitz (1991), "Molecular-dynamics simulator for optimal control of molecular motion," Am. J. Phys. 59, 1012-1017.

Ives, R. and W. Lonc (1992), "Event recorders from kymographs," Am. J. Phys. 60, 666-667.

Jolly, P., D. Zollman, N. S. Rebello, and A. Dimitrova (1998), "Visualizing motion in potential wells," Am. J. Phys. 66 (1), 57-63.

Keig, W. E. (1985), "Velocity dependence of friction on an air track," Am. J. Phys. 53, 1084-1085.

Kosiewicz, R. M. (1971), "The Doppler effect and Lissajous figures using a linear air track," Am. J. Phys. 39, 229.

Lonc, W. P. (1980), "Mechanical start-stop gates for air tracks," Am. J. Phys. 48, 685-686.

Lukefahr, H. G. (1992), "Magnetic diplole interactions on an air track," Am. J. Phys. 60, 1134-1136.

Maksymowicz, A. and W. J. Renoud (1973), "Car safety demonstration for air track," Am. J. Phys. 41, 1294-1295.

Melton, B. F. (1989), "A propeller-driven glider for the student air track," Am. J. Phys. 57, 543-6.

Metcalf, H. (1971), "Collision spectroscopy on the air track," Am. J. Phys. 39, 967-968.

Miles, C. L. and N. E. Heath (1971), "Colliding carts on a linear air-track draw their own graphs," Am. J. Phys. 39, 973-974.

Mita, K., W. Shirley, and C. R. Chang (1986), "An experiment with two air tracks," Am. J. Phys. 54, 428-32.

Mosca, E. P. and Ertel John P. (1989), "Photogates: an instrument evaluation," Am. J. Phys. 57, 840-4.

Mott, D. L. and E. C. Scarbrough (1978), "Another application for the linear air track," Am. J. Phys. 46, 300.

Naba, N. (1974), "Recording of a glider's motion using a ladder of light," Am. J. Phys. 42, 409-410.

Naba, N. (1985), "Computer-aided recording of a glider on an air-track," Am. J. Phys. 53, 86-87.

Naba, N. and Z. Kawai (1973), "A new type speedometer for an air track," Am. J. Phys. 41, 419-420.

Parodi, M. and D. pescetti (1974), "Coupling of air track gliders by forces acting at a distance," Am. J. Phys. 42, 414-416.

Rafert, J. B. and R. C. Nicklin (1983), "A microcomputer air-track timer," Am. J. Phys. 51, 763-764.

Reed, L. J. (1975), "Magnetic induction and the linear air track," Am. J. Phys. 43, 555-556.

Rochon, P. and N. Gauthier (1982), "Induction transducer for recording the velocity of a glider on an air track," Am. J. Phys. 50, 84-5.

Roiseland, D. S. (1968), "Cylindrical electrostatic voltmeter built around an air track," Am. J. Phys. 36, 849-851.

Rossing, T. D. and B. Windham (1978), "Noise emission from laboratory air blowers," Am. J. Phys. 46, 503-506.

Rossing, T. D. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: inelastic collisions on an air track," Am. J. Phys. 33, No. 6 - vi.

Shrader, E. F. (1965), "Two quantitative lecture demonstrations concerning linear momentum," Am. J. Phys. 33, 784-789.

Stenton, D. E. (1979), "Linear air tracks: revisited," Am. J. Phys. 47, 825-827.

Thayer, D. and E. Ney (1973), "A magnetic release for air-track experiments," Am. J. Phys. 41, 136-137.

Veit, J. J., D. J. Solarek, and M. A. Short (1971), "A modification of an impulse experiment for a linear air track," Am. J. Phys. 39, 566-567.

Vermillion, R. E. and G. O. Cook (1988), "A particle sliding down a movable incline: an experiment," Am. J. Phys. 56, 438-9.

Vogel, B. E., F. S. C. (1973), "Continuus quantitative measurements on a linear air track," Am. J. Phys. 41, 831-835.

Western, A. B. and W. P. Crummett (1986), "Ultrasonic ranging module interface and air-track kinetmatics for the Apple IIe," Am. J. Phys. 54, 894-7.

Wilson, D. (1965), "Reaction track," Am. J. Phys. 33, 857.

Bruce, I. (1990), "A one-dimensional collision experiment," Am. J. Phys. 58, 696.

Walkiewicz, T. A. and N. D. Newby, Jr. (1972), "Linear collisions," Am. J. Phys. 40, 133-137.

Freier, G. (1965), "Apparatus notes: a new reaction cart demonstration," Am. J. Phys. 33, No. 1 - xxv - xxvi.

Berger, J. (1988), "On potential energy, its force field and their measurement along an air track," Eur. J. Phys. 9, 47-50.

Whineray, S. (1991), "A cube-law air track oscillator," Eur. J. Phys. 12, 90-95.

Herreman, W. (1983), "Some physics demonstration experiments," Phys. Educ. 18, 47-49.

Janssen, H. J., L. Beerden, and E. L. M. Flerackers (1982), "Demonstration lampo board for air-track experiments," Phys. Educ. 17, 38-40.

O'Sullivan, C. T. (1990), "Introducing classical mechanics by means of microcomputer-based air track experiments," Phys. Educ. 25, 353-357.

-air tables, billiard balls & other colliding systems

To top?

Blackburn, J. A. and H. J. T. Smith (2004), "Determining a force law from a scattering experiment," Am. J. Phys. 72 (2), 237-242.

Carr, H. Y., R. T. Weidner, and G. H. Muller (1969), "Launcher and transparaent air table for use with overhead projector," Am. J. Phys. 37, 857-859.

Chonacky, N. J., L. D. Matthews, and J. W. Snyder (1971), "Improving the small hole air track and table," Am. J. Phys. 39, 340.

Daw, H. A. and Committee on Apparatus of the AAPT (1968), "A center bearing for the air table," Am. J. Phys. 36, 1020-1021.

Daw, H. A. and Committee on Apparatus of the AAPT (1968), "Air table grid," Am. J. Phys. 36, 1021.

Daw, H. A. and Committee on Apparatus of the AAPT (1968), "Double floating puck," Am. J. Phys. 36, 1022.

Elings, V. and D. Phillips (1970), "An apparatus to demonstrate molecular interaction on an air table," Am. J. Phys. 38, 1478-1480.

Hinrichsen, P. F. (1978), "An air-table experiment on rigid body dynamics," Am. J. Phys. 46, 1133-1138.

Jones, H. W. and M. Hunt (1973), "Gas supported pucks," Am. J. Phys. 41, 355-357.

Lehmann, C. (1979), "Structure and vibrational behavior of intestitial atoms in metals: an air table demonstration," Am. J. Phys. 47, 539-541.

Lehmann, C. and M. Rosenbauer (1980), "Focusing and defocusing collisions of atoms in solids: a classroom demonstration," Am. J. Phys. 48, 496-497.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: Linear and angular momentum," Am. J. Phys. 33, No. 10 - xiii.

Michaelis, M. M. (1994), "Shock simulation with magnetic pucks," Am. J. Phys. 62 (8), 7.

Myung-hyun Ha, Yang-kie Kim, and Sang Bub Lee (2001), "Development of an apparatus for two-dimensional collision experiment using a cycloidal slide," Am. J. Phys. 69 (11), 1187-90.

pearson, J. T. and W. S. Bradfield (1965), "Experimental verification of the gas-supported puck theory," Am. J. Phys. 33, 168.

peterson, F. C. (1988), "Air tables and the mystery of the lost momentum," Am. J. Phys. 56, 473-4.

Provost, J. P. (1975), "Least action principle on an air table," Am. J. Phys. 43, 774-781.

Rockefeller, R. R. (1975), "Conservation of angular and linear momentum on an air table," Am. J. Phys. 43, 981-983.

Wallace, R. E. and M. C. Schroeder (1988), "Analysis of billiard ball collisions in two dimensions," Am. J. Phys. 56, 815-819.

Webb, H. H. (1965), "Quantitative study of linear momentum in two dimensions by means of pucks operated on a rectangular air track," Am. J. Phys. 33, 1027-1032.

Wicher, E. R. (1965), "Elementary Rutherford scattering simulator," Am. J. Phys. 33, 635-636.

Wild, R. L. and R. A. Morandi (1973), "A frictionless action-reaction wheel using an air table," Am. J. Phys. 41, 137-138.

Borghi, A. D., P. Mascheretti, C. I. Massara, G. Gazzaniga, and L. Ironi (1984), "Computers in physics education: an example dealing with collision phenomena," Am. J. Phys. 52, 619-623.

Bercovich, C., U. Smilansky, and G. P. Farmelo (1991), "Demonstration of classical chaotic scattering," Eur. J. Phys. 12, 122-128.

Doménech, A. and T. Doménech (1988), "Relationships between the scattering angles in pendulum collisions," Eur. J. Phys. 9, 116-122.

Bobillo-Ares, N. C. and J. Fernandez-Nunez (1995), "Two-dimensional harmonic oscillator on an air table," Eur. J. Phys. 16 (5), 2.

-free fall

To top?

Bartlett, A. A., G. Fladstol, and L. Laingor (1975), "Accuracy of the "monkey and the hunter" demonstration," Am. J. Phys. 43, 562-563.

Bartlett, A. A., H. Clark, and R. Stoller (1975), "Improvements in the "monkey and the hunter" demonstration apparatus," Am. J. Phys. 43, 561-562.

Blackburn, J. A. and R. Koenig (1976), "Precision falling body experiment," Am. J. Phys. 44, 855-857.

Bohren, C. F. and A. B. Fraser (1992), "Fall streaks: parabolic trajectories with a twist," Am. J. Phys. 60, 1030-1033.

Edgar, A. (1991), "A low-cost timer for free-fall experiments," Am. J. Phys. 59, 568-569.

Ferlen, R. P. (1974), "A simple release mechanism for the free fall experiment," Am. J. Phys. 42, 255-256.

Gatland, I. R., Kahlscheuer Robert, and H. Menkara (1992), "Experiments utilizing an ultrasonic range finder," Am. J. Phys. 60, 451-454.

Goodman, J. M. (1975), "Electronic falling body simulator," Am. J. Phys. 43, 936-938.

Greenberg, M. S., F. Fazio, M. Russotto, and A. Wilkosz (1986), "Using videotapes to study damped harmonic motion and to measure terminal speeds: a laboratory project," Am. J. Phys. 54, 897-904.

Gunn, R. (1965), "The synchrodropper - a versatile tool," Am. J. Phys. 33, 824-827.

Humphrey, C. L. (1973), "Analysis of the free fall experiment," Am. J. Phys. 41, 965-968.

Lindemuth, J. (1971), "The effect of air resistance on falling balls," Am. J. Phys. 39, 757-759.

Maurone, P. A. (1979), "Time of flight for the bouncing ball experiment," Am. J. Phys. 47, 560.

Maurone, P. A. and F. J. Wunderlich (1978), "Bouncing ball experiment," Am. J. Phys. 46, 413-415.

Nelson, R. A. (1981), "Determination of the acceleration due to gravity with the Cenco-Behr free-fall apparatus," Am. J. Phys. 49, 829-833.

Quick, S. M. (1989), "A computer-assisted free-fall experiment for the freshman laboratory," Am. J. Phys. 57, 814-7.

Shuter, W. L. H. (1965), "Mechanics experiments using modified PSSC apparatus," Am. J. Phys. 33, 766-768.

Zafiratos, C., H. Clark, and R. Stoller (1975), "Compressed air launch mechanism for the "monkey and the hunter" demonstration," Am. J. Phys. 43, 562.

Stahlberg, B. and E. pesonen (1982), "Optoelectronic version of the "monkey-and-hunter" demonstration," Am. J. Phys. 50, 470-471.

Bunker, K. (1991), "A new free-fall experiment to determine the acceleration due to gravity," pe 26, 386-390.

pena Bernal, J. J., J. M. Vega, Calvo, J. L., and M. A. Rossell (1979), "An analogue technique for learning terminal velocity," pe 14, 103-105.

Shells, R. (1981), "Weightlessness," pe 16, 52-54.

-projectiles

To top?

Ayars, E. and L. Buchholtz (2004), "Analysis of the vacuum cannon," Am. J. Phys. 72 (7), 961-963.

Griffing, B. F. P., J. R. (1970), "Apparatus for demonstrating the independence of components of motion for a projectile," Am. J. Phys. 38, 1160-1161.

Hooper, W. (1979), "Comment on "Maximizing the range of a shot put" [D. B. Lichtenberg and J. G. Wills, Am. J. Phys. 46, 547 (1978)]," Am. J. Phys. 47, 748-749.

Kirwan, D. F. and J. Willis (1974), "Notes on a projectile motion experiment," Am. J. Phys. 42, 775-776.

Kemp, H. R. (1986), "Projectile paths corrected for recoil and air resistance," Phys. Educ. 21, 19-23.

Ruari Grant, A. (1990), "A study of the trajectories of projectiles," Phys. Educ. 25, 288-292.

-miscellaneous methods to measure g (acceleration due to gravity)

To top?

Aguiar, C. E. a. L., F. (2003), "Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball," Am. J. Phys. 71 (5), 499-501.

Dupre, A. and P. Janssen (2000), "An accurate determination of the acceleration of gravity g in the undergraduate laboratory," Am. J. Phys. 68 (8), 704-11.

Freier, G. D. (1969), "Obtaining 'g' with a time transformation," Am. J. Phys. 37, 929.

Guest, P. G. (1987), "Rolling precession," Am. J. Phys. 55, 446-448.

Klostergaard, H. (1976), "Determination of gravitational acceleration g using a uniform circular motion," Am. J. Phys. 44, 68-69.

Manche, E. P. (1979), "A rapid, convenient, and precise method for the absolute determination of the acceleration of gravity," Am. J. Phys. 47, 542-544.

Manche, E. P. (1979), "Erratum: "A rapid, convenient, and precise method for the absolute determination of the acceleration of gravity" [Am. J. Phys. 47, 542 (1979)]," Am. J. Phys. 47, 1010.

Mordue, D. L. (1971), "A measure of g?," Am. J. Phys. 39, 1266-1267.

Nelson, R. A. (1981), "Determination of the acceleration due to gravity with the Cenco-Behr free-fall apparatus," Am. J. Phys. 49, 829-833.

peterson, W. D. (1980), "Falling bubbles demonstrate acceleration of gravity," Am. J. Phys. 48, 888-889.

Rueckner, W. and P. Titcomb (1987), "An accurate determination of the acceleration of gravity for lecture hall demonstration," Am. J. Phys. 55, 324-30.

Wick, K. and K. Ruddick (1999), "An accurate measurement of g using falling balls," Am. J. Phys. 67 (11), 962-5.

Wunderlich, F. (1966), "Determination of 'g' through circular motion," Am. J. Phys. 34, 1199.

Delcour, J. and L. Hoffenbom (1988), "Mesure de temps par ordinateur," Eur. J. Phys. 9, 135-138.

peters, R. D. (1997), "Automated Kater pendulum," Eur. J. Phys. 18 (3), 217-21.

Blasiak, W. (1986), "Planning a school physics experiment," Phys. Educ. 21, 317-319.

-gravitational constant (G) & Cavendish balance

To top?

Block, B., R. D. Moore, and P. Roos (1965), "Do-it-yourself Cavendish balance," Am. J. Phys. 33, 963-965.

Clotfelter, B. E. (1987), "The Cavendish experiment as Cavendish knew it," Am. J. Phys. 55, 210-213.

Crandall, R. E. (1981), "Electronic Cavendish device," Am. J. Phys. 49, 700.

Crandall, R. E. (1983), "Electronic Cavendish device," Am. J. Phys. 51, 367-368.

D'Anci, A. M. and C. E. Armentrout (1988), "A light-beam data recorder for determination of the gravitational constant: anomalous driven oscillations of a gravitation torsion balance," Am. J. Phys. 56, 348-51.

Dousse, J. Cl. and CH. Rheme (1987), "A student experiment for accurate measurements of the Newtonian gravitational constant," Am. J. Phys. 55, 706-11.

Dunlap, R. A. (1987), "The use of amorphous metallic ribbon as a torsion spring for the measurement of the gravitational constant," Am. J. Phys. 55, 380.

Fischer, C. W., J. L. Hunt, and P. Sawatzky (1987), "Automatic recording for the Cavendish balance," Am. J. Phys. 55, 855-6.

Gillies, G. T. (1990), "Resource letter MNG-1: Measurements of Newtonian gravitation," Am. J. Phys. 58, 525-534.

Karim, M. and W. J. Toohey (1986), "Compensated Cavendish balance," Am. J. Phys. 54, 1043-5.

Neher, H. V. and Committee on Apparatus of the AAPT, Eds. (1966), "Damping of the moving system in Leybold Cavendish balance," Am. J. Phys. 34, No. 2 - xv.

Poultney, S. K. (1971), "Independent-study unit on universal gravitation," Am. J. Phys. 39, 297-302.

Saulnier, M. S. and D. Frisch (1989), "Measurement of the gravitational constant without torsion," Am. J. Phys. 57, 417-20.

Shaw, G. E. (1983), "Harmonically forced Cavendish balance," Am. J. Phys. 51, 913-916.

Sheppard, D. MN. (1970), "Using one pendulum and a rotating mass to measure the universal gravitational constant," Am. J. Phys. 38, 380.

Debe, M. K., D. E. Behlendorf, and R. H. Dittman (1971), "A dynamic Newtonian gravitional-force-gradient field generator and detector," Am. J. Phys. 39, 1142-1144.

-measurement of mass & weight

To top?

Story, J. W. V. (1984), "Measurement of the mass of an object hanging from a spring," Am. J. Phys. 52, 78-80.

Meyer, S. L. (1972), "Weighing in the physics laboratory: a thorough study of a simple measurement," Am. J. Phys. 40, 1328-1334.

-miscellaneous papers on mass & gravity

To top?

Pontiggia, C., A. Marciano, and E. Piano (1985), "Gravitational field and accelerated frame: a simple apparatus," Am. J. Phys. 53, 915-916.

Worden, P. W., Jr. and C. W. F. Everitt (1982), "Resource letter GI-1: Gravity and inertia," Am. J. Phys. 50, 494-500.

Hale, D. P. (1980), "A tilted plane as a gravitational field model," Phys. Educ. 15, 306-309.

-force table

To top?

Gustafson, D. R. (1978), "Modified force table experiment," Am. J. Phys. 46, 774-775.

peterson, F. C. and S. Levgold (1983), "An addition of forces experiment for the introductory laboratory," Am. J. Phys. 51, 571-572.

Sandin, T. R. (1973), "Rotational motion with a force table," Am. J. Phys. 41, 1295-1296.

Stoller, R. (1973), "A force table for overhead projection," Am. J. Phys. 41, 1115-1116.

-static equilibrium and solid mechanics

To top?

Gonzalez, A. G. and J. Gratton (1996), "Reaction forces on a ladder leaning on a rough wall," Am. J. Phys. 64 (8), 1001-5.

Hopfl, Th., D. Sander, and J. Kirschner (2001), "Demonstration of different bending profiles of a cantilever caused by a torque or a force," Am. J. Phys. 69 (10), 1113-15.

Mendelson, K. S. (1995), "Statics of a ladder leaning against a rough wall," Am. J. Phys. 63 (2), 1.

perkalskis, B. S. and J. R. Freeman (2000), "Demonstrating induced birefringence in stressed glass," Am. J. Phys. 68 (9), 871-2.

Varieschi, G. and K. Kamiya (2003), "Toy models for the falling chimney," Am. J. Phys. 71 (10), 1025-31.

Turner, R. C. (1987), "Toys in physics teaching: balancing man," Am. J. Phys. 55, 84-85.

Belendez, T., C. Neipp, and A. Belendez (2002), "Large and small deflections of a cantilever beam," Eur. J. Phys. 23 (3), 371-9.

perkalskis, B. S., J. R. Freeman, and A. Suhov (2004), "Examining Young's modulus for wood," Eur. J. Phys. 25 (2), 323-9.

Boyd, J. N. and P. N. Raychowdhury (1985), "An elegant experiment in mechanical equilibrium," Phys. Educ. 20, 248-249.

-force measurement experiments

To top?

Cross, R. (1999), "Standing, walking, running, and jumping on a force plate," Am. J. Phys. 67 (4), 304-9.

Linthorne, N. P. (2001), "Analysis of standing vertical jumps using a force platform," Am. J. Phys. 69 (11), 1198-204.

Lee, B. E. (1974), "Dynamic force measurement with strain gauges," Am. J. Phys. 42, 108-110.

-friction

To top?

Andereck, B. S. (1999), "Measurement of air resistance on an air track," Am. J. Phys. 67 (6), 528-533.

Armstrong, H. L. (1985), "How dry friction realy behaves," Am. J. Phys. 53, 910-911.

Chaplin, R. L. and M. G. Miller (1984), "Coefficient of friction for a sphere," Am. J. Phys. 52, 1108-1111.

Crawford, F. S. (1983), "Home-experimental demonstrations of Hart's frictional force rotator," Am. J. Phys. 51, 804-806.

Cross, R. (2005), "Increase in friction force with sliding speed," Am. J. Phys. 73 (9), 812-16.

Doménech, A., T. Doménech, and J. Cebrián (1987), "Introduction to the study of rolling friction," Am. J. Phys. 55, 231-235.

Edmonds, I., N. Giannakis, and C. Henderson (1995), "Cyclotron analog applied to the measurement of rolling friction," Am. J. Phys. 63 (1), 7.

Folkerts, T. J. (2004), "Exploring factors affecting measurements of the static coefficient of friction: an application of fractional factorial experiment design," Am. J. Phys. 72 (10), 1335-41.

Fox, G. T. (1971), "Three experiments in friction for the introductory laboratory," Am. J. Phys. 39, 947-.

Fox, J. A. (1965), "Study of sliding friction as a sophomore physics experiment," Am. J. Phys. 33, 587-588.

Gauthier, N. (1980), "Viscous damping and restitution coefficients for a glider on an inclined linear air track," Am. J. Phys. 48, 79-81.

Hart, J. B. (1982), "Frictional force rotator," Am. J. Phys. 50, 631-634.

Keig, W. E. (1985), "Velocity dependence of friction on an air track," Am. J. Phys. 53, 1084-1085.

Levin, E. (1991), "Friction experiments with a capstan," Am. J. Phys. 59, 80-84.

Nahshol, D. (1965), "Coefficient of friction machine," Am. J. Phys. 33, 161.

Schruben, D. L. (1986), "Frictional force and impulse measured in the slip method of determining inertial moment," Am. J. Phys. 54 (12), 1143-5.

Shaw, D. E. (1979), "Frictional force on rolling objects," Am. J. Phys. 47, 887-888.

Weltner, K. (1987), "Central drift of freely moving balls on rotating disks: a new method to measure coefficients of rolling friction," Am. J. Phys. 55, 937-942.

Witters, J. and D. Duymelinck (1986), "Rolling and sliding resistive forces on balls moving on a flat surface," Am. J. Phys. 54, 80-83.

Doménech, A. and E. Casasús (1991), "Frontal impact of a rolling sphere," Phys. Educ. 26, 186-189.

-conservation of mechanical energy

To top?

Blaszczak, D. R. (1991), "The roller coaster experiment," Am. J. Phys. 59, 283-285.

Ehrlich, R. (1996), "Using a retractable ball point pen to test the law of conservation of energy," Am. J. Phys. 64 (2) 176.

Wiss, J. and B. D. Zak (1973), "Cheap, accurate, conservation of mechanical energy experiment," Am. J. Phys. 41, 1100-1101.

Speers, R. R. (1991), "Physics and roller coasters - the Blue Streak at Cedar Point," Am. J. Phys. 59, 528-533.

Hwu, H. S. (1980), "Conservation of mechanical energy," Phys. Educ. 15, 293-294.

-bouncing balls & coefficient of restitution

To top?

Aguiar, C. E. a. L., F. (2003), "Listening to the coefficient of restitution and the gravitational acceleration of a bouncing ball," Am. J. Phys. 71 (5), 499-501.

Benenson, W. and W. Bauer (1993), "Frame grabbing techniques in undergraduate physics education," Am. J. Phys. 61 (9), 848-851.

Bernstein, A. D. (1977), "Listening to the coefficient of restitution," Am. J. Phys. 45, 41-44.

Chaplin, R. L. and M. G. Miller (1984), "Coefficient of friction for a sphere," Am. J. Phys. 52, 1108-1111.

Cross, R. (1999), "The bounce of a ball," Am. J. Phys. 67 (3), 222-7.

Cross, R. (2002), "Grip-slip behavior of a bouncing ball," Am. J. Phys. 70 (11), 1093-102.

Cross, R. (2002), "Measurements of the horizontal coefficient of restitution for a superball and a tennis ball," Am. J. Phys. 70 (5), 482-9.

Cross, R. (2005), "Bounce of a spinning ball near normal incidence," Am. J. Phys. 73 (10), 914-20.

Garwin, R. L. (1969), "Kinematics of an ultraelastic rough ball," Am. J. Phys. 37, 88-92.

Gauthier, N. (1980), "Viscous damping and restitution coefficients for a glider on an inclined linear air track," Am. J. Phys. 48, 79-81.

Genova, J. J. (1972), "Comments on a coefficient of restitution experiment [R. Gruebel, J. Dennis, and L. Choate, Am. J. Phys. 39, 447 (1971)]," Am. J. Phys. 40, 781.

Gruebel, R., J. Dennis, and L. Choate (1971), "A variable coeficient of restitution experiment on a linear air track," Am. J. Phys. 39, 447-449.

Gugan, D. (2000), "Inelastic collision and the Hertz theory of impact," Am. J. Phys. 68 (10), 920-4.

Haigh, P. J. (1969), "Demonstrating elastic and inelastic collisions using bouncing and nonbouncing balls," Am. J. Phys. 37, 333.

Harter, W. G., class of (1971), "Velocity amplification in collision experiments involving superballs," Am. J. Phys. 39, 565-663.

Jeffers, F. and J. A. Soules (1965), "Elementary study of impulsive forces," Am. J. Phys. 33, 1079-1081.

Maurone, P. A. (1979), "Time of flight for the bouncing ball experiment," Am. J. Phys. 47, 560.

Maurone, P. A. and F. J. Wunderlich (1978), "Bouncing ball experiment," Am. J. Phys. 46, 413-415.

Mellen, W. R. (1968), "Superball rebound projectiles," Am. J. Phys. 36, 845.

Pfaltzgraff, D. J. (1969), "Analog simulation of the bouncing-ball problem," Am. J. Phys. 37, 1008-1012.

Schruben, D. L. (1986), "Frictional force and impulse measured in the slip method of determining inertial moment," Am. J. Phys. 54, 1143-5.

Shaw, D. E. (1979), "Frictional force on rolling objects," Am. J. Phys. 47, 887-888.

Shuter, W. L. H. (1965), "Mechanics experiments using modified PSSC apparatus," Am. J. Phys. 33, 766-768.

Smith, P. A., C. D. Spencer, and D. E. Jones (1981), "Microcomputer listens to the coefficient of restitution," Am. J. Phys. 49, 136-140.

Stensgaard, I. and E. Lgsgaard (2001), "Listening to the coefficient of restitution - revisited," Am. J. Phys. 69 (3), 301-5.

Strobel, G. L. (1968), "Matrices and superballs," Am. J. Phys. 36, 834-837.

Sundaralingam, K. (1978), "Comment on "Listening to the coefficient of restitution" [Alan D. Bernstein, Am. J. Phys. 45, 41-44 (1977) ... with reply by Alan D. Bernstein," Am. J. Phys. 46, 951-952.

Domenech, A. (2005), "A classical experiment revisited: the bounce of balls and superballs in three dimensions," Am. J. Phys. 73 (1), 28-36.

Britton, W. G. B., J. J. Fendley, and M. E. Michael (1978), "Longitudinal impact of rods: a continuing experiment," Am. J. Phys. 46.

Boyd, J. N. and P. N. Raychowdhury (1986), "Computer graphics for the coefficient of restitution," Phys. Educ. 21, 28-29.

Doménech, A. and E. Casasús (1991), "Frontal impact of a rolling sphere," Phys. Educ. 26, 186-189.

-ballistic pendulum & other ballistics experiments

To top?

Alt, R. L. (1972), "A corrupted ballistic pendulum," Am. J. Phys. 40, 1688-1689.

Amato, J. C. and R. E. Williams (1998), "Crater formation in the laboratory: an introductory experiment in error analysis," Am. J. Phys. 66 (2), 141-143.

Christensen, F. E. and Committee on Apparatus of the AAPT (1968), "The Beck ball pendulum," Am. J. Phys. 36, 851.

Donnelly, D. and J. B. Diamond (2003), "Slow collisions in the ballistic pendulum: a computational study," Am. J. Phys. 71 (6), 535-40.

Gupta, P. D. (1985), "Blackwood pendulum experiment and the conservation of linear momentum," Am. J. Phys. 53, 267-269.

peterson, F. C. (1983), "Timing the flight of the projectile in the classical ballistic pendulum experiment," Am. J. Phys. 51, 602-604.

Stoylov, S. P., J. C. Nsanzabera, and P. C. Karenzi (1972), "A demonstration of momentum conservation using bow, arrow, and ballistic pendulum," Am. J. Phys. 40, 430-432.

Strnad, J. (1970), "Trouble with a ballistic pendulum," Am. J. Phys. 38, 532-534.

Wagner, W. S. (1985), "The spring gun ballistic pendulum: an alternate method for finding the initial velocity," Am. J. Phys. 53, 1114-1115.

Wall, C. N. (1968), "Apparatus review: the Beck ball pendulum," Am. J. Phys. 36.

Wicher, E. (1977), "Ballistics pendulum," Am. J. Phys. 45, 681-682.

Prigo, R. and A. Rosales (1976), "More general and interesting versions of the ballistics cart and tunnel demonstration," Am. J. Phys. 44, 783-785.

Everett, G. E. and R. L. Wild (1979), "Inexpensive time-of-flight velocity measurements," Am. J. Phys. 47, 426-428.

-rockets

To top?

Fischbach, F. (1993), "Adapting a small rocket engine to an air track," Am. J. Phys. 61 (1), 1154 .

Greenwood, M. S., R. Bernett, Benavides M., S. Granger, R. Plass, and S. Wlaters (1989), "Using a smart-pulley Atwood machine to study rocket motion," Am. J. Phys. 57 (10), 943-6.

Huebner, J. S., A. S. Fletcher, J. A. Cato, and J. A. Barrett (1999), "Micro-rockets for the classroom," Am. J. Phys. 67 (11), 1031-3.

-Feynman sprinkler

To top?

Berg, R. E. and M. R. Collier (1989), "The Feynman inverse sprinkler problem: a demonstration and quantitative analysis," Am. J. Phys. 57, 654-657.

Collier, M. R., R. E. Berg, and R. A. Ferrell (1991), "The Feynman inverse sprinkler problem: a detailed kinematic study," Am. J. Phys. 59, 349-355.

Forrester, A. T. (1986), "Inverse sprinklers: a lesson in the use of a conservation principle," Am. J. Phys. 54, 798-799.

Hsu, L. (1988), "Inverse sprinklers: two simple experiments and the resolution of the Feynman-Forrester conflict," Am. J. Phys. 56, 307-308.

Jenkins, A. (2004), "An elementary treatment of the reverse sprinkler," Am. J. Phys. 72 (10), 1276-82.

McInnes, B. A. (1978), "Comment on "Rotating water sprinkler" by Weyland and Patterson," Am. J. Phys. 46, 1194.

Weyland, J. A. and J. D. Patterson (1976), "Rotating water sprinkler," Am. J. Phys. 44, 1106-1109.

Dasgupta, S., P. Mitra, and S. Sangupta (1990), "More on inverse sprinklers," Eur. J. Phys. 11, 311.

-Atwood's machine

To top?

Chen, H. S. C. (1966), "New Atwood's machine attachment," Am. J. Phys. 34, 955-956.

Eaton, B. G. (1969), "A frictionless, rotation-free simple Atwood's machine," Am. J. Phys. 37, 451-452.

Flores, J., G. Solovey, and S. Gil (2003), "Flow of sand and a variable mass Atwood machine," Am. J. Phys. 71 (7), 715-20.

Greenberg, M. S., F. Fazio, M. Russotto, and A. Wilkosz (1986), "Using the Atwood machine to study Stokes' law," Am. J. Phys. 54, 904-6.

Greenslade, T. B., Jr. (1988), ""Atwood's" oscillator," Am. J. Phys. 56, 1151-3.

Greenwood, M. S., R. Bernett, Benavides M., S. Granger, R. Plass, and S. Wlaters (1989), "Using a smart-pulley Atwood machine to study rocket motion," Am. J. Phys. 57, 943-6.

Lindgren, E. R. (1988), "Comments on "Using the Atwood machine to study Stokes' law" [M. Stautberg et al., Am. J. Phys. 54, 904 (1986)]," Am. J. Phys. 56, 940.

McDermott, L. C., P. S. Shaffer, and M. D. Somers (1994), "Research as a guide for teaching introductory mechanics. An illustration in the context of the Atwood's machine," Am. J. Phys. 62 (1), .

Tufillaro, N. B. (1994), "Teardrop and heart orbits of a swinging Atwood's machine," Am. J. Phys. 62 (3), 2.

Tufillaro, N. B., T. A. Abbott, and D. J. Griffiths (1984), "Swinging Atwood's machine," Am. J. Phys. 52, 895-903.

Tufillaro, N., A. Nunes, and J. Casasayas (1988), "Unbounded orbits of a swinging Atwood's machine," Am. J. Phys. 56, 1117-1120.

Casasayas, J., N. Tufiillaro, and A. Nunes (1989), "Infinity manifold of a swinging Atwood's machine," Eur. J. Phys. 10, 173-177.

-angular momentum; rotating and rolling objects

To top?

Akyuz, R. O. (1996), "Angular momentum conservation (a freshman experiment)," Am. J. Phys. 64 (4), 446-448.

Amato, J. C., R. E. Williams, and H. Helm (1995), "A "black box" moment of inertia apparatus," Am. J. Phys. 63 (10), 891-894.

Amengual, A. (1996), "On a simple experiment on the free rotation of a ruler and other laminas," Am. J. Phys. 64 (1), 82-87.

Armstron, H. L. (1965), "Rotation and angular acceleration," Am. J. Phys. 33, 507.

Bachman, R. A. (1985), "Sphere rolling down a grooved track," Am. J. Phys. 53, 765-767.

Bacon, M. E. (2005), "How balls roll off tables," Am. J. Phys. 73 (8), 722-724.

Bacon, M. E., G. Heald, and M. James (2001), "A closer look at tumbling toast," Am. J. Phys. 69 (1), 38-43.

Barnes, G. (1986), "Conservation of momentum demonstration using a piece of sewar pipe," Am. J. Phys. 54, 741.

Berg, R. E. (1990), "Rotating liquid mirror," Am. J. Phys. 58, 280-281.

Bettis, C. (1981), "Captstan experiment," Am. J. Phys. 49, 1080-1081.

Burr, A. F. (1974), "Non-colinearity of angular velocity and angular momentum vector," Am. J. Phys. 42, 100-101.

Carnevali, A. and R. May (2005), "Rolling motion of non-axisymmetric cylinders," Am. J. Phys. 73 (10), 909-13.

Case, W. B. and M. A. Shay (1992), "On the interesting behavior of a gimble-mounted gyroscope," Am. J. Phys. 60, 502-506.

Chaplin, R. L. and M. G. Miller (1984), "Coefficient of friction for a sphere," Am. J. Phys. 52, 1108-1111.

Connolly, W. C. and R. C. Connolly (1973), "Angular momentum demonstration," Am. J. Phys. 41, 131-132.

Correll, M. (1965), "Apparatus notes: Mechanical analog of electron or nuclear spin resonance," Am. J. Phys. 33, No. 4 - xxvi.

Cox, A. J. (1998), "Angular momentum and motorcycle counter-steering: A discussion and demonstration," Am. J. Phys. 66 (11), 1018-20.

Datta, S. (1978), "Demonstrations of angular momentum," Am. J. Phys. 46, 1190-1192.

Daw, H. A. (1965), "Two air-supported devices for physics laboratories and for physics demonstrations," Am. J. Phys. 33, 322-326.

Daw, H. A. (1988), "A large demonstration gyroscope," Am. J. Phys. 56, 657-60.

Daw, H. A. (1990), "Water flow demonstration in the rotating frame," Am. J. Phys. 58, 381-384.

Daw, H. A. and M. R. D. Pomeroy (2001), "The free rotator apparatus," Am. J. Phys. 69 (3), 389-93.

de Lange, O. L. and J. Pierrus (1993), "Measurement of inertial and noninertial properties of an air suspension gyroscope," Am. J. Phys. 61 (11), 9.

De Souza, R. E. and G. L. Vasconcelos (1996), "Visual appearance of a rolling bicycle wheel," Am. J. Phys. 64 (7), 896-7.

Doménech, A., T. Doménech, and J. Cebrián (1987), "Introduction to the study of rolling friction," Am. J. Phys. 55, 231-235.

Eaton, B., R. de Geer, and W. Johnson (1985), "Moment of inertia apparatus," Am. J. Phys. 53.

Edmonds, I., N. Giannakis, and C. Henderson (1995), "Cyclotron analog applied to the measurement of rolling friction," Am. J. Phys. 63 (1), 7.

Ehrlich, R. and J. Tuszynski (1995), "Ball on a rotating turntable: comparison of theory and experiment," Am. J. Phys. 63 (4), 3.

Ficken, G. W., Jr. (1972), "Putting a penny "into orbit"," Am. J. Phys. 40, 776.

Fischer, F. and R. L. WIld (1979), "Demonstration of reduced gas pressure in a centrifugal field," Am. J. Phys. 47, 450-451.

Gauthier, N. (2002), "A Newton-Faraday approach to electromagnetic energy and angular momentum storage in an electromechanical system," Am. J. Phys. 70 (10), 1034-8.

Griffiths, I. W., J. Watkins, and D. Sharpe (2005), "Measuring the moment of inertia of the human body by a rotating platform method," Am. J. Phys. 73 (1), 85-92.

Gualtieri, M., T. Tokieda, L. Advis-Gaete, B. Carry, E. Reffet, and C. Guthmann (2006), "Golfer's dilemma," Am. J. Phys. 74 (6), 497-501.

Guest, P. G. (1987), "Rolling precession," Am. J. Phys. 55, 446-448.

Gutierrez, G., C. Fehr, A. Calzadilla, and D. Figueroa (1998), "Fluid flow up the wall of a spinning egg," Am. J. Phys. 66 (5), 442-5.

Hart, J. (1965), "The conservation of angular momentum," Am. J. Phys. 33, 345.

Harter, W. G. and C. C. Kim (1976), "Singular motions of asymmetic rotators," Am. J. Phys. 44, 1080-1083.

Helrich, C. and T. Lehman (1979), "A rolling pendulum bob: conservation of energy and partitioning of kinetic energy," Am. J. Phys. 47, 367-368.

Hendrickson, T. J. (1965), "Angular momentum experiment," Am. J. Phys. 33, No. 8 - iii - iv.

Herrmann, F. and G. B. Schmid (1985), "Demonstration of angular momentum coupling between rotating systems," Am. J. Phys. 53, 735-737.

Jackson, K. A., J. E. Finck, C. R. Bednarski, and L. R. Clifford (1996), "Viscous and nonviscous models of the partially filled rolling can," Am. J. Phys. 64 (3), 277-82.

Jefimenko, O. (1974), "Water stream "loop-the-loop"," Am. J. Phys. 42, 103-105.

Kalotas, T. M. and A. R. Lee (1990), "A simple device to illustrate angular momentum conservation and instability," Am. J. Phys. 58, 80-81.

Klostergaard, H. (1976), "Conservation of angular mometnum - a demonstration," Am. J. Phys. 44, 21.

Knudsen, A. W. (1973), "A student's gyrocompass," Am. J. Phys. 41, 531-539.

Lauffenburger, J. C. (1972), "A large-scale demonstration of the Tippe-Top," Am. J. Phys. 40, 1338.

Levy-Leblond, J. (1978), "Rock or roll: non-isochronous small oscillations (an example)," Am. J. Phys. 46, 106-107.

Lima, F. F., V. M. Oliveira, and M. A. F. Gomes (1993), "A Galilean experiment to measure a fractal dimension," Am. J. Phys. 61 (5), 421-2.

Mak, S. Y. and K. Y. Wong (1989), "A qualitative demonstration of the conservation of angular momentum in a system of two noncoaxial rotating disks," Am. J. Phys. 57, 951-2.

Mallory, W. R. (1975), "Moment-of-inertia demonstrator," Am. J. Phys. 43, 563.

Marschall, L. A. (1981), "Driven "portulum": a rolling ball as a simple oscillating system," Am. J. Phys. 49, 557-561.

McDonald, K. T. (1998), "Physics in the laundromat," Am. J. Phys. 66 (3), 209-11.

McGeer, T. and L. H. Palmer (1989), "Wobbling, toppling, and forces of contact," Am. J. Phys. 57, 1089-1098.

McKibben, J. L. (1977), "Tiple pendulum as an analog to three coupled stationary states," Am. J. Phys. 45, 1022-1026.

Mead, L. R. and F. W. Bentrem (1998), "Almost rolling motion: an investigation of rolling grooved cylinders," Am. J. Phys. 66 (3), 202-8.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: Linear and angular momentum," Am. J. Phys. 33, No. 10 - xiii.

Neher, H. V. and Committee on Apparatus of the AAPT, Eds. (1966), "Free rotation of a sphere," Am. J. Phys. 34, No. 2 - xv.

Nelson, E. B. (1965), "A simple experiment in rotational dynamics," Am. J. Phys. 33, 848-849.

Olsson, M. G. (1986), "Comment on the slipping of a rolling sphere [D. E. Shaw and F. J. Wunderlish, Am. J. Phys. 52, 997 (1984)]," Am. J. Phys. 54, 667.

Parodi, M. and D. pescetti (1969), "Effect of a viscous friction force on the angular momentum of a particle in a central force field," Am. J. Phys. 37, 936-937.

peterson, F. C. and S. A. Williams (1983), "A computerized rotational motion experiment for the introductory physics laboratory," Am. J. Phys. 51, 901-905.

Prigo, R. B. (1984), "The wobbling Christmas tree toy," Am. J. Phys. 52, 335-337.

Prigo, R. B. and M. Reading (1977), "Quantitative angular momentum experiment on the rotating chair," Am. J. Phys. 45, 636-637.

Retsky, M. W. (1965), "Observation of the precession of the spin axis relative to the body axes of a rotating body," Am. J. Phys. 33, 1047-1049.

Romer, R. H. (1981), "Motion of a sphere on a tilted turntable," Am. J. Phys. 49, 985-986.

Sandin, T. R. (1973), "Rotational motion with a force table," Am. J. Phys. 41, 1295-1296.

Sanmartin, J. R. (1984), "O Botafumeiro: parametric pumping in the Middle Ages," Am. J. Phys. 52, 937-945.

Schultz, S. (1966), "Thought stimulator on angular momentum," Am. J. Phys. 34, 1201.

Shaw, D. E. (1979), "Frictional force on rolling objects," Am. J. Phys. 47, 887-888.

Shaw, D. E. and F. J. Wunderlich (1984), "Study of the slipping of a rolling sphere," Am. J. Phys. 52, 997-1000.

Shonle, J. I. (1965), "Correction to resource letter CM-1 [Am. J. Phys. 33, 879 (1965)]," Am. J. Phys. 33, 273.

Shonle, J. I. (1965), "Resource letter CM-1 on the teaching of angular momentum and rigid body motion," Am. J. Phys. 33, 879-887.

Sokirko, A. V., A. A. Belopolskii, A. V. Matytsyn, and D. A. Kossakowski (1994), "Behavior of a ball on the surface of a rotating disk," Am. J. Phys. 62 (2), 1.

Sperry, W. C. (1969), "Some operational characteristics of the search rotational dynamics apparatus," Am. J. Phys. 37, 1282-1283.

Stabler, H. P. and Committee on Apparatus of the AAPT, Eds. (1966), "Path of a rim point on a precessing spinning wheel," Am. J. Phys. 34, No. 4 - xvii..

Stewart, A. T. (1966), "Two-circle roller," Am. J. Phys. 34, 166-167.

Then, J. W. and K. Chang (1970), "Experimental determination of moments of inertia by the bifilar pendulum method," Am. J. Phys. 38, 537-539.

Theron, W. F. D. (1995), "Bouncing due to the "infinite jerk" at the end of a circular track," Am. J. Phys. 63 (10), 9.

Varieschi, G. and K. Kamiya (2003), "Toy models for the falling chimney," Am. J. Phys. 71 (10), 1025-31.

Weckesser, W. (1997), "A ball rolling on a freely spinning turntable," Am. J. Phys. 65 (8), 736-8.

Weltin, H. (1966), "Experiment with rigid body dynamics," Am. J. Phys. 34, 764-766.

Weltner, K. (1987), "Central drift of freely moving balls on rotating disks: a new method to measure coefficients of rolling friction," Am. J. Phys. 55, 937-942.

Whitehead, L. A. and F. L. Curzon (1983), "Spinning objects on horizontal planes," Am. J. Phys. 51, 449-452.

Witters, J. and D. Duymelinck (1986), "Rolling and sliding resistive forces on balls moving on a flat surface," Am. J. Phys. 54, 80-83.

Burns, J. A. (1981), "Ball rolling on a turntable: analog for charged particle dynamics," Am. J. Phys. 49, 56-58.

Eriksen, E. and K. Voyenli (1991), "Quasi-electrodynamic effects in the motion of a sphere that rolls on a rotating disk," Eur. J. Phys. 12, 135-141.

Hennekam, W. and J. Bontsema (1991), "Determination of Ft and Kd from the solution of the equation of motion of a cyclist," Eur. J. Phys. 12, 59-63.

le Henaff, Y. (1987), "Dynamical stability of the bicycle," Eur. J. Phys. 8, 207-210.

Levy-Leblond, J. M. (1986), "Le billiard d'ANAIS," Eur. J. Phys. 7, 252-258.

Pippard, A. B. (1990), "How to make a celt or rattleback," Eur. J. Phys. 11, 63-64.

Tort, A., A. P. M. Reiss, and F. C. Santos (1991), "An equibalence principle for the ANAIS billiards experiment," Eur. J. Phys. 12, 23.

Matthews, R. A. J. (1995), "Tumbling toast, Murphy's Law and the fundamental constants," Eur. J. Phys. 16 (4), 1.

Sharma, N. L. (1996), "A new observation about rolling motion," Eur. J. Phys. 17 (6), 353-6.

Carnero, C., P. Carpena, and J. Aguiar (1997), "The rolling body paradox: an oscillatory motion approach," Eur. J. Phys. 18 (6), 409-16.

Ladera, C. L., C. Millan, and J. Paredes (1998), "An intriguing case of real-life physics: the tilting of Venezuelan coins in the Caracas Metro," Eur. J. Phys. 19 (3), 271-9.

Benenson, R. E. and J. C. Kimball (2002), "The Euler machine," Eur. J. Phys. 23 (2), 95-102.

Pintao, C. A. F., M. P. de Souza Filho, C. R. Grandini, and R. Hessel (2004), "Experimental study of the conventional equation to determine a plate's moment of inertia," Eur. J. Phys. 25 (3), 409-17.

Armstrong, H. L. (1985), "An experiment on the inertial properties of a rigid body," Phys. Educ. 20, 138-141.

Bridges, R. (1991), "The spin of a bouncing superball," Phys. Educ. 26, 350-354.

Doménech, A. and E. Casasús (1991), "Frontal impact of a rolling sphere," Phys. Educ. 26, 186-189.

Fisher, B. W. (1991), "No flies on this wheel," Phys. Educ. 26, 321-323.

Leas, M. J. (1982), "Tops - with strings attached," Phys. Educ. 17, 24-25.

Lockett, K. (1988), "Rotational energy," Phys. Educ. 23, 226-229.

Sambles, J. R., T. W. Priest, S. R. Lang, and R. P. Toms (1983), "A rolling sphere on a tilted rotating turntable," Phys. Educ. 18, 234-239.

-rotating frames, centripetal & Coriolis forces

To top?

Arny, T. T. (1982), "Coriolis force simulation," Am. J. Phys. 50, 381.

Berg, R. E. (1980), "Local inertial frame of reference demonstration," Am. J. Phys. 48, 310-312.

Calvert, J. B., E. V. Hofman, and H. C. Westdal (1975), "An inexpensive rotating-room apparatus," Am. J. Phys. 43, 567-568.

Chefurka, P. M. (1966), "Modifications for centripetal force apparatus," Am. J. Phys. 34, 708.

Christensen, F. E. and Committee on Apparatus of the AAPT (1965), "Coriolis force apparatus," Am. J. Phys. 33, No. 8 - iii.

Daw, H. A. (1987), "Coriolis lecture demonstration," Am. J. Phys. 55, 1010-1014.

Daw, H. A. (1990), "The New Mexico State University motion room," Am. J. Phys. 58, 668-672.

Denardo, B., B. Barber, C. Folley, and W. Wright (1989), "Nonfrictional hysteresis in a rotating U-tube," Am. J. Phys. 57, 1126-1130.

Denardo, B., W. Wright, B. Barber, and C. Folley (1990), "A rotating U-tube experiment," Am. J. Phys. 58, 631-635.

Ehrlich, R. and J. Tuszynski (1995), "Ball on a rotating turntable: comparison of theory and experiment," Am. J. Phys. 63 (4), 3.

Fischer, F. and R. L. WIld (1979), "Demonstration of reduced gas pressure in a centrifugal field," Am. J. Phys. 47, 450-451.

Fletcher, R. I. (1972), "The apparent field of gravity in a rotating fluid system," Am. J. Phys. 40, 959-965.

Goodman, J. M. and D. S. Chandler (1971), "A rotating coordinate frame visualizer," Am. J. Phys. 39, 1129-1133.

Grasso, M. N., T. O. Merlo, and M. E. Lavigne (1969), "Effective gravitational acceleration," Am. J. Phys. 37, 456.

Hegarty, J. C. (1966), "Student experiment on Coriolis force," Am. J. Phys. 34, 157-159.

Johnson, P. B., P. B. Pipes, and M. W. Johns (1974), "Laboratory exercises in centripetal and coriolis accelerations," Am. J. Phys. 42, 892-895.

Kugler, M. (1989), "Motion in noninertial systems: theory and demonstrations," Am. J. Phys. 57, 247-251.

Leff, H. S. (1986), ""Counterrevolutionary" physics," Am. J. Phys. 54, 776.

Levine, M. D. (1978), "Coriolis machine, or demonstration of inertial motion from a rotating reference frame," Am. J. Phys. 46, 759-760.

Martin, A. M. and D. F. Mariani (1984), "Coriolis acceleration: a laboratory experiment," Am. J. Phys. 52, 814-817.

McIntyre, D. H. (2000), "Using great circles to understand motion on a rotating sphere," Am. J. Phys. 68 (12), 1097-105.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1966), "Apparatus notes: Rotating coordinate system," Am. J. Phys. 34, No. 1 - xvii.

Moore, J. A. (1975), "Centripetal force apparatus," Am. J. Phys. 43, 466-467.

Newhall, H. F. (1977), "Modified centripetal force apparatus," Am. J. Phys. 45, 496-497.

Opat, G. I. (1990), "Coriolis and magnetic forces: the gyrocompass and magnetic compass as analogs," Am. J. Phys. 58, 1173-6.

peterson, F. C. and S. A. Williams (1983), "A computerized rotational motion experiment for the introductory physics laboratory," Am. J. Phys. 51, 901-905.

Romer, R. H. (1981), "Motion of a sphere on a tilted turntable," Am. J. Phys. 49, 985-986.

Ronhovde, P. and R. Sirochman (2003), "Center of mass correction to an error-prone undergraduate centripetal force experiment," Am. J. Phys. 71 (2), 185-8.

Sahyun, S. C. and P. J. Siemens (2005), "CageLab: A low-cost apparatus to demonstrate rotational motion for advanced undergraduates," Am. J. Phys. 73 (6), 566-70.

Thompson, O. E. (1973), "On the demonstration and interpretation of the Coriolis effect," Am. J. Phys. 41, 247-255.

Weltner, K. (1987), "Central drift of freely moving balls on rotating disks: a new method to measure coefficients of rolling friction," Am. J. Phys. 55, 937-942.

Wessner, J. (1975), "Centrifugal farce apparatus," Am. J. Phys. 43, 838-839.

Wildey, R. L. (1989), "A correction for spring mass in the ubiquitous centripetal force experiment of freshman physics," Am. J. Phys. 57, 1098-102.

Williamson, S. J. and A. Korda (1972), "A new twist for a centripetal force experiment," Am. J. Phys. 40, 482-484.

Ogorelec, Z. (1995), "On the shape of a rotating liquid surface," Eur. J. Phys. 16 (6), 2.

Lewowski, T., L. Lewowska, and P. Mazur (1999), "Measurement of the effect of Coriolis and centrifugal forces on the trajectory of a body in a rotating frame," Eur. J. Phys. 20 (2), 109-16.

Martinez, J. C., E. Polatdemir, A. Bansal, Wang Yifeng, and Wang Shengtao (2006), "Fluid flow up a spinning egg and the Coriolis force," Eur. J. Phys. 27 (4), 805-17.

Bligh, P. H., I. C. Ferebee, and J. Hughes (1982), "Experimental physics with a rotating table," Phys. Educ. 17, 89-94.

Fricker, H. S. (1990), "Measuring centripetal force," Phys. Educ. 25, 163-166.

Unsworth, J. and D. A. Unsworth (1981), "Centripetal accelerometer," Phys. Educ. 16, 50-52.

-miscellaneous papers on classical mechanics fundamentals

To top?

Ahearne, J. F. (1966), "Introductory physics experiments using a digital computer," Am. J. Phys. 34, 309-313.

Alberts, L. (1966), "An instructive bomb experiment," Am. J. Phys. 34, 707.

Ball, P. L., G. D. Doolen, E. S. Fry, and M. D. Wedin (1974), "Car-crash experiment for the undergraduate laboratory," Am. J. Phys. 42, 645-648.

Berg, R. E. (1980), "Local inertial frame of reference demonstration," Am. J. Phys. 48, 310-312.

Blackford, B. L. (1978), "The physics of a push-me pull-you boat," Am. J. Phys. 46, 1004-1006.

Blackford, B. L. (1981), "A push-me pull-you wind vehicle," Am. J. Phys. 49, 282-283.

Bucher, M. (1988), "The bed of nails revisited," Am. J. Phys. 56, 806-810.

Bylsma, R., N. Ai, and D. A. van Baak (1988), "Oscillations of a suspended chain," Am. J. Phys. 56, 1024-1032.

Calkin, M. G. and R. H. March (1989), "The dynamics of a falling chain," Am. J. Phys. 57, 154-157.

Calkin, M. G. and R. H. March (1989), "The dynamics of a falling chain: II," Am. J. Phys. 57, 157-159.

Caplan, G. M. and M. A. Heald (2004), "Ye olde inertia demonstration," Am. J. Phys. 72 (7), 860-2.

Carver, T. R. and J. O. Crawford (1973), "A "spectacular" for a lecture demonstration of two-body interaction," Am. J. Phys. 41, 922-924.

Chandrasekaran, K. S. (1966), "Demonstration analog device for solving linear simultaneous equations," Am. J. Phys. 34, 359-360.

Chefurka, P. M. (1966), "Equipment for nonuniform acceleration," Am. J. Phys. 34, 706.

Chimino, D. F. and R. R. Hoyer (1985), "An audio-tutorial mechanics laboratory for introductory physics," Am. J. Phys. 53, 44-48.

Cintra do Prado, L. (1970), "Utilizing automatic balances for Poggendorff's experiment on the second law of motion," Am. J. Phys. 38, 541-542.

Cook, C. L. (1990), "Improved version of a linear momentum conservation experiment," Am. J. Phys. 58, 599-600.

Cross, R. (2000), "Tension loss along a string," Am. J. Phys. 68 (12), 1152-3.

De Jong, M. L. and A. Faber (1977), "Muzzle velocity experiment," Am. J. Phys. 45, 882.

Domann, F. E. (1982), "An improved Newton's second law experiment," Am. J. Phys. 50, 185-6.

Drugowich de Felicio, J. R. and O. Hipolito (1985), "Spontaneous symmetry breaking in a simple mechanical model," Am. J. Phys. 53, 690-693.

Drumheller, J. E., D. Raffaelle, and M. Baldwin (1986), "An improved mechanical model to demonstrate the first- and second-order phase transitions of the easy axis Heisenberg antiferromagnet," Am. J. Phys. 54, 1130-1133.

Eckstein, S. G. (1990), "Verification of fundamental prinicples of mechanics in the computerized student laboratory," Am. J. Phys. 58, 909-15.

Finn, E. J. (1974), "Linear momentum conservation in a nonconservative environment," Am. J. Phys. 42, 54-57.

Flansburg, L. and K. Hudnut (1979), "Dynamical solutions for linear elastic collisions," Am. J. Phys. 47, 911-914.

Flores, J., A. G. del Rio, A. Calles, and H. Riveros (1972), "A simple problem in mechanics: a qualitative approach," Am. J. Phys. 40, 595-598.

Gomes, M. A. F., Wm. R. Savage, and A. S. L. Gomes (1983), "Local stability: an elementary demonstration and discussion," Am. J. Phys. 51, 636-641.

Griffiths, D. J. and T. A. Abbott (1992), "Comment on "A surprising mechanics demonstration," by A. R. Marlow [Am. J. Phys. 59, 951-952 (1991)," Am. J. Phys. 60, 951-953.

Grove, T. T. and A. Ehle (2004), "Impulse, momentum, and energy of human strikes using inexpensive piezo disks," Am. J. Phys. 72 (2), 281-4.

Henshaw, C. L. and J. N. Lloyd (1966), "Two modifications of the Welch central force apparatus," Am. J. Phys. 34, 981.

Herreman, W. and H. Notebart (1979), "Mechanical demonstration of Lissajous figures," Am. J. Phys. 47, 1014-1015.

Herreman, W. and H. Notebart (1983), "Circularly polarized waves: a mechanical demonstration," Am. J. Phys. 51, 91.

Herrmann, F. (1986), "Demonstration of a slow inelastic collision," Am. J. Phys. 54, 658.

Herrmann, F. and M. Seitz (1982), "How does the ball-chain work?," Am. J. Phys. 50, 977-981.

Herrmann, F. and T. Mühlbayer (1983), "A constant force generator for the demonstration of Newton's second law," Am. J. Phys. 51, 344-346.

Hilton, W. A. (1965), "The monkey and the coconut: a demonstration," Am. J. Phys. 33, 662.

Johnson, R. C. (1965), "The monkey and the bananas: a demonstration," Am. J. Phys. 33, 348.

Johnson, W. H. and Committe on Apparatus of the AAPT, Eds. (1966), "Velocity of a bullet," Am. J. Phys. 34, No. 3 - xxx.

Karioris, F. G. (1978), "Inertia demonstration revisited," Am. J. Phys. 46, 710-713.

Kesteven, M. (1978), "On the mathematical theory of clock escapements," Am. J. Phys. 46, 125-129.

Kissinger, P. B. (1975), "Velocity modulation - a klystron analogy," Am. J. Phys. 43, 915-918.

Klein, W. and G. Nimtz (1989), "Inelastic collision and the motion of the center of mass," Am. J. Phys. 57, 182.

Kugler, M. (1989), "Motion in noninertial systems: theory and demonstrations," Am. J. Phys. 57, 247-251.

Lai, H. M., L. Leung, K. Lee, and K. P. Chik (1986), "Mechanical analog of optical retarders," Am. J. Phys. 54, 455-8.

Lavatelli, L. (1965), "Orbit graphing by iteration: asimple laboratory exercise," Am. J. Phys. 33, 605-612.

Lieb, B. J. (1986), "Use of a graphics tablet in mechanics experiments," Am. J. Phys. 54, 187.

Liesegang, J. and A. R. Lee (1978), "Dynamics of a bicycle: nongyroscopic aspects," Am. J. Phys. 46, 130-132.

Lindgren, E. R. (1990), "The transport of momentum theorem," Am. J. Phys. 58, 352-357.

Marlow, A. R. (1991), "A surprising mechanics demonstration," Am. J. Phys. 59, 951-952.

Martin, D. H. (1983), "Simple demonstration of momentum change," Am. J. Phys. 51, 474.

McFarlane, W. K. (1970), "A discriminating laboratory in elementary mechanics," Am. J. Phys. 38, 305-310.

McGeer, T. and L. H. Palmer (1989), "Wobbling, toppling, and forces of contact," Am. J. Phys. 57, 1089-1098.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: accelerated coordinate system," Am. J. Phys. 33, No. 9 - xi- xii.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1966), "Apparatus notes: Inertial reference frames," Am. J. Phys. 34, No. 1 - xviii.

Merrill, J. R. and R. A. Morrow (1970), "An introductory scattering experiment by simulation," Am. J. Phys. 38, 1104-1107.

Merritt, D. R. and F. Weinhaus (1978), "The pressure curve for a rubber balloon," Am. J. Phys. 46, 976-977.

Murphy, A. B. (1989), "Comment on "A Flettner rotor ship demonstration," by G. barnes [Am. J. Phys. 55, 1040 (1987)]," Am. J. Phys. 57, 181-182.

Pieranski, P. (1984), "An experimental model of a classical many-body system," Am. J. Phys. 52, 68-73.

Price, R. I. (1987), "Use of the "Welch" scattering apparatus," Am. J. Phys. 55, 931-3.

Prigo, R. B. (1982), "Classroom tightrope walking," Am. J. Phys. 50, 471-3.

Rubcic, A. and J. Baturic-Rubcic (1985), "A push-me-pull-you water-driven wheeled vehicle," Am. J. Phys. 53, 962-967.

Serway, R. A. (1976), "Lecture demonstration of the "bosun's chair"," Am. J. Phys. 44, 882-883.

Shen, K. Y. and B. L. Scott (1985), "The hourglass problem," Am. J. Phys. 53, 787-788.

Sherman, J. F. (1985), "Experimental analysis of the work done by a variable force," Am. J. Phys. 53, 442-445.

Shrader, E. F. (1965), "Two quantitative lecture demonstrations concerning linear momentum," Am. J. Phys. 33, 784-789.

Shuter, W. L. H. (1965), "Mechanics experiments using modified PSSC apparatus," Am. J. Phys. 33, 766-768.

Sullivan, D. B. and J. E. Zimmerman (1971), "Mechanical analogs of time dependent Josephson phenomena," Am. J. Phys. 39, 1504-1517.

Svonavec, M. (1987), "Accelerated motion with a variable weight," Am. J. Phys. 55, 753-4.

Swanson, S. and J. Garner (1989), "Applications of Newtonian mechanics to curve fitting," Am. J. Phys. 57, 698-704.

Tea, P. L., Jr. (1990), "On seeing instantaneous centers of velocity," Am. J. Phys. 58, 495-497.

Temple, P. A. (1975), ""Fleeting event" demonstration for freshman classes," Am. J. Phys. 43, 733-734.

Thayer, D. and E. Ney (1972), "Modified mass hanger," Am. J. Phys. 40, 1876.

Vermillion, R. E. and G. O. Cook (1988), "A particle sliding down a movable incline: an experiment," Am. J. Phys. 56, 438-9.

Vermillion, R. E. and H. M. Simpson (1989), "Spinning a pulley with a vibrating cord: a marvel," Am. J. Phys. 57, 540-2.

Whitehead, L. A. (1983), "Domino "chain reaction"," Am. J. Phys. 51, 182.

Phelps, F. M., III, F. M. Phelps, IV., B. Zorn, and J. Gormley (1982), "An experimental study of the brachistochrone," Eur. J. Phys. 3, 1-4.

Read, G. A. (1987), "Expreimental evidence for Newton's laws," Eur. J. Phys. 8, 6-9.

Nedev, S. (2000), "The catenary-an ancient problem on the computer screen," Eur. J. Phys. 21 (5), 451-7.

Desaix, M., D. Anderson, and M. Lisak (2005), "The brachistochrone problem-an introduction to variational calculus for undergraduate students," Eur. J. Phys. 26 (5), 857-64.

Bunker, C. A. (1986), "Teaching elementary mechanics using a simple 'bubble-tube' accelerometer," Phys. Educ. 21, 272-276.

Herreman, W. (1983), "Some physics demonstration experiments," Phys. Educ. 18, 47-49.

Nilsson, Ö., L. petersson, and P. Carlsson (1992), "Experiments using a microcomputer in a school laboratory," Phys. Educ. 27, 42-45.

Nissan, M., C. L. Vaughan, and J. O'Conner (1988), "The MicronEye motion monitor: a new tool for class and laboratory demonstrations," Phys. Educ. 23, 38-41.

Saitoh, A. (1986), "WInding motion," Phys. Educ. 21, 98-102.

To top?