06 Fundamental quantum behavior

Instructional Experiments on

Fundamental Quantum Behavior

(and some related theory papers)

Topics

-photoelectric effect and measuring Planck's constant

To top?

Barnett, J. D. and H. T. Stokes (1988), "Improved student laboratory on the measurement of Planck's constant using the photoelectric effect," Am. J. Phys. 56, 86-7.

Bobst, R. L. and E. A. Karlow (1985), "A direct potential measurement in the photoelectric effect experiment," Am. J. Phys. 53, 911-912.

Boys, D. W., M. E. Cox, and W. Mykolajenko (1978), "Erratum: "Photoelectric effect revisited (or an inexpensive device to determine h/e)" [Am. J. Phys. 46, 133 (1978)]," Am. J. Phys. 46, 1078.

Boys, D. W., M. E. Cox, and W. Mykolajenko (1978), "Photoelectric effect revisited (or an inexpensive device to determine h/e)," Am. J. Phys. 46, 133-135.

Brower, H. (1976), "Demonstration of the photelectric effect with a Geiger counter," Am. J. Phys. 44, 305-306.

Carver, T. R. (1975), "Useful lecture demonstration of photoelectric wavelength threshold," Am. J. Phys. 43, 370-371.

Crandall, R. E. and J. F. Delord (1983), "Minimal apparatus for determination of Planck's constant," Am. J. Phys. 51, 90-91.

Earle, G. D., B. L. Copp, J. H. Klenzing, and R. L. Bishop (2003), "A novel empirical study of the photoelectric effect in thin gold films," Am. J. Phys. 71 (8), 766-9.

Ellefson, R. E. (1970), "An inexpensive photoelectric effect apparatus," Am. J. Phys. 38, 767-768.

Hall, H. H. (1971), "A new amplifier for the photelectric effect and Planck's constant experiment," Am. J. Phys. 39, 1542-2543.

Hall, H. H. and R. P. Tuttle (1971), "Photoelectric effect and Planck's constant in the introductory laboratory," Am. J. Phys. 39, 50-54.

Hanson, R. J. and b. E. Clotfelter (1966), "Evaluation of commercial apparatus for measuring h/e," Am. J. Phys. 34, 75-78.

Iona, M. (1966), "Stopping potential for photoelectrons," Am. J. Phys. 34, 707.

Knudsen, A. W. (1983), "The photoelectric determination of h/e: a new approach to an old problem," Am. J. Phys. 51, 725-729.

McCleelan, G., E. M. DSidwall, and C. J. Rigby (1978), "Experiments on the photelectric effect and on the diffusion of electrons in gases," Am. J. Phys. 46, 832-839.

Miller, J. E., A. R. Reed, and D. P. Miller (1966), "Photoelectric charging of an electroscope," Am. J. Phys. 34, 172.

Powell, R. A. (1978), "Photoelectric effect: back to basics," Am. J. Phys. 46, 1046-1051.

Robinson, G. F. (1965), "Photoelectric charging of an electroscope," Am. J. Phys. 33, 746.

Rudnick, J. and D. S. Tannhauser (1976), "Concerning a widespread error in the description of the photoelectric effect," Am. J. Phys. 44, 796-798.

Steinberg, R. N., G. E. Oberem, and L. C. McDermott (1996), "Development of a computer-based tutorial on the photoelectric effect," Am. J. Phys. 64 (11), 1370-9.

Keesing, R. G. (1981), "The measurement of Planck's constant using the visible photoelectric effect," Eur. J. Phys. 2, 139-149.

Chakarvarti, S. K. and B. L. Sharma (1988), "Determination of Planck's constant using the photoelectric effect," Phys. Educ. 23, 249-251.

Morton, N. and J. Abraham (1986), "Planck's constant and the photoelectric effect," Phys. Educ. 21, 377-378.

-charge of an electron & Millikan's oil drop experiment

To top?

Adams, J. H., Jr. (1968), "A drop discriminator and ionizer for Millikan's oil drop experiment," Am. J. Phys. 36, 1170-1171.

Anderson, D. L. (1966), "Resource letter ECAN-1 on the electronic charge and Avogadro's number," Am. J. Phys. 34, 2-8.

Bottoms, B. D. and J. E. Faller (1965), "A convenient method for changing the charge in the Millikan's oil drop experiment," Am. J. Phys. 33, 411.

Fairbank, W. M., Jr. and A. Franklin (1982), "Did Millikan observe fractional charges on oil drops?," Am. J. Phys. 50, 394-.

Heald, M. A. (1974), "Millikan oil-drop experiment in the introductory laboratory," Am. J. Phys. 42, 244-246.

Jones, R. C. (1995), "The Millikan oil-drop experiment: making it worthwhile," Am. J. Phys. 63 (11), 970-7.

Kapusta, J. I. (1975), "Best measuring time for a Millikan oil drop experiment," Am. J. Phys. 43, 799-800.

Kruglak, H. (1968), "Suggestions for the Pasco Millikan oil drop apparatus," Am. J. Phys. 36, 1169.

Kruglak, H. (1972), "Another look at the Pasco-Millikan oil-drop apparatus," Am. J. Phys. 40, 768-769.

Neher, H. V. and Committee on Apparatus of the AAPT, Eds. (1966), "Apparatus notes: Changing the charge on the drop in Millikan oil drop apparatus," Am. J. Phys. 34, No. 2 - xv.

Olson, D. E. (1965), "Apparatus review: a new Millikan oil-drop experiment," Am. J. Phys. 33, 858-859.

Spenceley, B. and L. Hastings (1972), "Laser illumination for the Millikan oil-drop experiment," Am. J. Phys. 40, 474-475.

Wall, C. N. and F. E. Christensen (1975), "Dual-purpose Millikan experiment with polystyrene spheres," Am. J. Phys. 43, 408-413.

-e/m measurements

To top?

Armstrong, H. L. (1965), "Power packs for Hoag's tube," Am. J. Phys. 33, 244.

Bartlett, A. A. and M. Correll (1965), "An undergraduate laboratory apparatus for measuring e/m as a function of velocity," Am. J. Phys. 33, 327-339.

Berge, P. O. and J. R. Shipman (1977), "Power supply for the measurement of the charge-to-mass ration of the electron," Am. J. Phys. 45, 495-496.

Galscock, M. and D. M. Sparlin (1972), "Thomson's e/m experiment revisited," Am. J. Phys. 40, 1663-1668.

Peterson, F. C. (1983), "Intrumenting an e/m experiment for use in large enrollment courses," Am. J. Phys. 51, 320-322.

Price, J. E. (1987), "Electron trajectory in an e/m experiment," Am. J. Phys. 55, 18-22.

Thompson, W. J. (1990), "Determining e/m with a Bainbridge tube: Less data, more physics," Am. J. Phys. 58, 1019-20.

Wall, C. N. (1966), "The Ferranti guard ring diode. Magnetron determination of e/m," Am. J. Phys. 34, 73-74.

Whyte, T. D., N. P. J. Rymills, and J. S. Willis (1984), "Measurement of e/m- using Dunnington's method - an experiment for advanced undergraduates," Am. J. Phys. 52, 706-710.

Yong-Kang Yang (1998), "Determining the ratio of charge to mass e/m for electrons by magnetic focusing," Am. J. Phys. 66 (2), 157-62.

Jarvis, W. H. (1980), "e/m using demonstration cathode ray apparatus," Phys. Educ. 15.

Jarvis, W. H. (1980), "e/m using the oscilloscope," Phys. Educ. 15, 150-151,295.

-Stern-Gerlach experiment

To top?

Alstrom, P., P. Hjorth, and R. Mattuck (1982), "Paradox in the classical treatment of the Stern-Gerlach experiment," Am. J. Phys. 50, 697-698.

Alstrøom, P. (1984), "Concerning S. Singh and N. Sharma: "Comment on 'Paradox in the classsical treatment of the Stern-Gerlach experiment'" [Am. J. Phys. 2, 274 (1984)]," Am. J. Phys. 52.

Hannout, M., S. Hoyt, A. Kryowonos, and A. Widom (1998), "Quantum measurement theory and the Stern-Gerlach experiment," Am. J. Phys. 66 (5), 377-9.

Platt, D. E. (1992), "A modern analysis of the Stern-Gerlach experiment," Am. J. Phys. 60, 306-308.

Porter, J., R. F. Pettifer, and D. R. Leadley (2003), "Direct demonstration of the transverse Stern-Gerlach effect," Am. J. Phys. 71 (11), 1103-8.

Schroeder, D. V. and T. A. Moore (1993), "A computer-simulated Stern-Gerlach laboratory," Am. J. Phys. 61 (9), 798-805.

Mackintosh, A. R. (1983), "The Stern-Gerlach experiment, electron spin and intermediate quantum mechanics," Eur. J. Phys. 4, 97-106.

Patil, S. H. (1998), "Quantum mechanical description of the Stern-Gerlach experiment," Eur. J. Phys. 19 (1), 25-30.

-particle diffraction & wavelike behavior of particles

To top?

Burch, K. D., J. L. Huang, and R. G. Greenler (1985), "Optical simulation of low-energy electron diffraction patterns," Am. J. Phys. 53, 237-242.

Cooke, J. H. and K. N. Bates (1971), "A wavepacket generator for demonstrating the complementarity rule," Am. J. Phys. 39, 302-304.

Donati, O., G. F. Missiroli, and G. Pozzi (1973), "An experiment on electron interference," Am. J. Phys. 41, 639-644.

Gähler, R. and A. Zeilinger (1991), "Wave-optical experiments with very cold neutrons," Am. J. Phys. 59, 316-324.

Gilson, G. (1989), "Demonstrations of two-slit electron interference," Am. J. Phys. 57, 680.

Hawkins, W. B. (1966), "Mechanical double slit demonstration," Am. J. Phys. 34, 170.

Jönsson, C. (1974), "Electron diffraction at multiple slits," Am. J. Phys. 42, 4-11.

Klein, A. G., L. J. Martin, and G. I. Opat (1977), "Fresnel diffraction of slow neutrons," Am. J. Phys. 45, 295-297.

Leavitt, J. A. and F. A. Bills (1969), "Single-slit diffraction pattern of a thermal atomic potassium beam," Am. J. Phys. 37, 905-914.

Matteucci, G. (1991), "Electron wavelike behavior: a historical and experimental introduction," Am. J. Phys. 59, 1143-1147.

Matteucci, G. and C. Beeli (1998), "An experiment on electron wave-particle duality including a Planck constant measurement," Am. J. Phys. 66 (12), 1055-9.

Matteucci, G. and G. Pozzi (1978), "Two further experiments on electron interference," Am. J. Phys. 46, 619-623.

Merli, P. H., G. F. Missiroli, and G. Pozzi (1976), "On the statistical aspect of electron interference phenomena," Am. J. Phys. 44, 306-307.

Nairz, O., M. Arndt, and A. Zeilinger (2003), "Quantum interference experiments with large molecules," Am. J. Phys. 71 (4), 319-25.

Rueckner, W. and P. Titcomb (1996), "A lecture demonstration of single photon interference," Am. J. Phys. 64 (2), 184-8.

Silverman, M. P., W. Strange, and J. C. H. Spence (1995), "The brightest beam in science: new directions in electron microscopy and interferometry," Am. J. Phys. 63 (9), 800-13.

Tonomura, A., J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa (1989), "Demonstration of single-electron buildup of an interference pattern," Am. J. Phys. 57, 117-20.

Vermillion, R. E. (1994), "On presenting wave-particle duality using a simulated detector for multiple slit diffraction," Am. J. Phys. 62 (3), 249-51.

Kawasaki, T., G. F. Missiroli, G. Pozzi, and A. Tonomura (1997), "Three- and four-beam electron interference experiments," Eur. J. Phys. 18 (1), 7-14.

Brown, L. M. (1983), "A test of relativity by electron diffraction," Phys. Educ. 18, 174-176.

-tunneling experiments, analogues & simulations

To top?

Albiol, F., S. Navas, and M. V. ANdres (1993), "Microwave experiments on electromagnetic evanescent waves and tunneling effect," Am. J. Phys. 61, 165-169.

Castro, J. C. (1975), "Optical barrier penetration - a simple experimental arrangement," Am. J. Phys. 43, 107-108.

Coon, D. D. (1966), "Counting photons in the optical barrier penetration experiment," Am. J. Phys. 34, 240-243.

Handy, M., K. and G. F. Landegren (1977), "A closer look at optical barrier penetration," Am. J. Phys. 45, 574-575.

Huppert, J. J. and G. Ott (1966), "Electromagnetic analog of the quantum-mechanical tunnel effect," Am. J. Phys. 34, 260-265.

Kodre, A. and J. Strnad (1976), "Optical barrier penetration," Am. J. Phys. 44, 181-182.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: optical analog for quantum mechanical barrier penetration," Am. J. Phys. 33, No. 5 - xviii.

-quantum behavior & interference of photons

To top?

Bardou, F. (1991), "Transition between particle behavior and wave behavior," Am. J. Phys. 59, 458-461.

Corey, R., M. Kissner, and P. Saulnier (1995), "Coherent backscattering of light," Am. J. Phys. 63 (6), 56-4.

du Marchie van Voorthuysen, E. H. (1996), "Realization of an interaction-free measurement of the presence of an object in a light beam," Am. J. Phys. 64 (12), 1504-7.

Fridriksson, S., P. J. Millet, and H. L. Parker, II (1976), "Computerized data collection in photon-counting experiments using a programmable calculator," Am. J. Phys. 44, 105-106.

Funk, A. C. and M. Beck (1997), "Sub-Poissonian photocurrent statistics: theory and undergraduate experiment," Am. J. Phys. 65 (6), 492-500.

Holbrow, C. H., E. Galvez, and M. E. Parks (2002), "Photon quantum mechanics and beam splitters," Am. J. Phys. 70 (3), 260-5.

Joyce, W. B. (1975), "Radiation force and the classical mechanics of photons and phonons," Am. J. Phys. 43, 245-255.

Koczyk, P., P. Wiewior, and C. Radzewicz (1996), "Photon counting statistics-undergraduate experiment," Am. J. Phys. 64 (3), 240-5.

Schneider, M. B. and I. A. LaPuma (2002), "A simple experiment for discussion of quantum interference and which-way measurement," Am. J. Phys. 70 (3), 266-71.

Thorn, J. J., M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck (2004), "Observing the quantum behavior of light in an undergraduate laboratory," Am. J. Phys. 72 (9), 1210-19.

-entanglement, local realism & Bell's inequality

To top?

Ballentine, L. E. (1987), "Resource letter IQM-2: foundations of quantum mechanics since the Bell inequalities," Am. J. Phys. 55, 785-792.

Carlson, J. A., M. D. Olmstead, and M. Beck (2006), "Quantum mysteries tested: an experiment implementing Hardy's test of local realism," Am. J. Phys. 74 (3), 180-6.

Dehlinger, D. and M. W. Mitchell (2002), "Entangled photon apparatus for the undergraduate laboratory," Am. J. Phys. 70 (9), 898-902.

Dehlinger, D. and M. W. Mitchell (2002), "Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory," Am. J. Phys. 70 (9), 903-10.

Galvez, E. J., C. H. Holbrow, M. J. Pysher, J. W. Martin, N. Courtemanche, L. Heilig, and J. Spencer (2005), "Interference with correlated photons: five quantum mechanics experiments for undergraduates," Am. J. Phys. 73 (2), 127-40.

Lemelle, D. S., M. P. Almeida, P. H. S. Ribeiro, and S. P. Walborn (2006), "A simple optical demonstration of quantum cryptography using transverse position and momentum variables," Am. J. Phys. 74 (6), 542-6.

Stedman, G. E. (1985), "A lecture demonstration of the incompatibility of quantum predictions with those of a local realistic theory," Am. J. Phys. 53, 1143-1149.

-quantum information, computing & cryptography

To top?

Havel, T. F., D. G. Cory, S. Lloyd, N. Boulant, E. M. Fortunato, M. A. Pravia, G. Teklemariam, Y. S. Weinstein, A. Bhattacharyya, and J. Hou (2002), "Quantum information processing by nuclear magnetic resonance spectroscopy," Am. J. Phys. 70 (3), 345-62.

-quantum measurement

To top?

Axon, T. J. (1989), "Introducing Schrödinger's cat in the laboratory," Am. J. Phys. 57 (4), 317-21.

Cooper, L. N. and D. Van Vechten (1969), "On the interpretation of measurement within the quantum theory," Am. J. Phys. 37, 1212-1220.

Krass, A. S. (1978), "Quantum measurements on a computer: an interactive treaching program," Am. J. Phys. 46, 152-158.

Schulman, L. S. (1969), "Measurement and interference," Am. J. Phys. 37, 1220-1221.

-miscellaneous papers on elementary particles (low energy) and fund. quantum behavior

To top?

Bayliss, J. T. (1969), "On the meaning of "mean life"," Am. J. Phys. 37, 929-930.

Cooke, J. H. and K. N. Bates (1971), "A wavepacket generator for demonstrating the complementarity rule," Am. J. Phys. 39, 302-304.

Cowan, E. W. (1966), "Electric analog network for quantum mechanics," Am. J. Phys. 34, 1122-1125.

Crandall, R. E. (1983), "Photon mass experiment," Am. J. Phys. 51, 698-702 .

Goldhaber, A. S. and W. P. Trower (1990), "Resource letter MM-1: Magnetic monopoles," Am. J. Phys. 58, 429-439.

Larraza, A. (1999), "A demonstration apparatus for an acoustic analog to the Casimir effect," Am. J. Phys. 67 (11), 1028-30.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: effect demonstrator," Am. J. Phys. 33, No. 10 - xiii - xiv.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: Standing waves in a circle," Am. J. Phys. 33, No. 10 - xiv.

Nunn, W. M. and M. Figueroa (1983), "An uncertainty demonstration with electromagnetic waves," Am. J. Phys. 51, 239-245.

Portis, A. M. (1966), "Electrons, photons, and students," Am. J. Phys. 34, 1087-1092.

Rieflin, E. (1979), "Some mechanisms related to Dirac's strings," Am. J. Phys. 47, 379-381.

Schober, A. M., B. Ruedlinger, and A. J. Dahm (1999), "Measurement of the ratio h/e^2 in an advanced undergraduate laboratory," Am. J. Phys. 67 (6), 524-7.

Sternheim, M. M. (1972), "Resource letter TQE-1: tests of quantum electrodynamics," Am. J. Phys. 40, 1363-1373.

Wolf, E. L. (1982), "Quantized angular momenta in the laser gyro," Am. J. Phys. 50, 660-2.

Woodilla, J. and H. Schwarz (1971), "Experiments verifying the Aharanov-Bohm effect," Am. J. Phys. 39, 111-112.

Yazaki, T. and K. Fukushima (1985), "Experimental studies of potential problems in quantum mechanics using nonlinear transmission line," Am. J. Phys. 53, 1186-1191.

Zollman, D. A., N. S. Rebello, and K. Hogg (2002), "Quantum mechanics for everyone: Hands-on activities integrated with technology," Am. J. Phys. 70 (3), 252-9.

Berry, M. V., R. G. Chambers, M. D. Large, C. Upstill, and J. Walmsey (1980), "Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue," Eur. J. Phys. 1, 154-162.

Juhasz, A. and G. Marx (1983), "Models for complementarity," Eur. J. Phys. 4, 150-155.

Kox, A. J. (1997), "The discovery of the electron. II. The Zeeman effect," Eur. J. Phys. 18 (3), 139-44.

Mackintosh, A. R. and J. Jensen (1983), "Quantum correlations and measurements," Eur. J. Phys. 4, 235-239.

Rogers, G. L. (1994), "A visual demonstration of the simple quantum theory of the hydrogen atom," Eur. J. Phys. 15 (3), 110 .

Emeleus, T. G. (1990), "An uncertainty principle experiment using optical coherence and bandwidth measurements," Phys. Educ. 25, 357-359.