05em Electromagnetic waves

Instructional Experiments on Electromagnetc Waves & Radio

(and some related theory papers)

-speed of light

To top?

Barr, R. and T. R. Armstrong (1990), "An inexpensive apparatus for the measurement of the group velocity of light in transparent media using a modified Helium-Neon laser," Am. J. Phys. 58, 1059-64.

Bates, H. E. (1983), "Measuring the speed of light by independent frequency and wavelength determination," Am. J. Phys. 51, 1003-1008.

Bates, H. E. (1988), "Resource letter RMSL-1: Recent measurements of the speed of light and the definition of the meter," Am. J. Phys. 56, 682-687.

Becchetti, F. D., K. C. Harvey, B. J. Schwartz, and M. L. Shapiro (1987), "Time-of-flight measurement of the speed of light using a laser and a low-voltage Pöckels-cell modulator," Am. J. Phys. 55, 632-4.

Bergel, L. and S. Arnold (1976), "Speed of light determined by microwave interference," Am. J. Phys. 44, 546-547.

Biretta, J. A. and J. E. Lang (1978), "A simple velocity of light experiment," Am. J. Phys. 46, 1189-1190.

Blackburn, J. A. (1980), "Fiber optic wink-around speed of light experiment," Am. J. Phys. 48, 523-525.

Brickner, R. G., L. A. Kappers, and F. P. Lipschultz (1979), "Determination of the speed of light by measurement of the beat frequency of internal laser modes," Am. J. Phys. 47, 1086-1087.

Ciholas, M. E. and P. M. Wilt (1987), "A pulser circuit for measuring the speed of light," Am. J. Phys. 55, 853-4.

Clark, G. W. (2001), "An electrical measurement of the speed of light," Am. J. Phys. 69 (2), 110-12.

Cooke, J., M. Martin, H. McCartney, and B. Wilf (1968), "Direct determination of the speed of light as a general physics laboratory experiment," Am. J. Phys. 36, 847.

Crandall, R. E. (1982), "Minimal apparatus for the speed-of-light measurement," Am. J. Phys. 50, 1157-1159.

Culver, R. B. (1974), "A student exercise in determining the velocity of light," Am. J. Phys. 42, 776-778.

Culver, R. B. and R. G. Leisure (1972), "An experimental determination o the velocity of light from stellar structure," Am. J. Phys. 40, 1585-1587.

Deblaquieere, J. A., K. C. Harvey, and A. K. Hemann (1991), "Time-of-flight measurement of the speed of light using an acousto-optic modulator," Am. J. Phys. 59, 443-447.

Domkowski, A. J., C. B. Richardson, and N. Rowbotham (1972), "Measurement of the speed of light," Am. J. Phys. 40, 910-912.

Edmonds, D. S., Jr. and R. V. Smith (1971), "A velocity of light measurement using a laser beam," Am. J. Phys. 39, 1145-1148.

Elmore, W. C. (1972), "A spark light source for velocity of light experiments," Am. J. Phys. 40, 740-745.

Feagin, J. M. (1979), "Another modification of Foucault's method of determining the speed of light," Am. J. Phys. 47, 288-289.

French, W. R. and Committe on Apparatus of the AAPT, Eds. (1966), "Apparatus notes: velocity of light demonstration using a new short-duration pulsed light source," Am. J. Phys. 34, No. 9 - ix.

Glick, F. (1972), "Velocity of light from the earth-moon-earth communications delay," Am. J. Phys. 40, 1867-1868.

Graham, J. R. (1996), "Measuring the speed of digital signals (speed of light)," Am. J. Phys. 64 (3), 220-4.

Gulmez, E. (1997), "Measuring the speed of light with a fiber optic kit: an undergraduate experiment," Am. J. Phys. 65 (7), 614-18.

Handschy, M. A. (1982), "Re-examination of the 1887 Michelson-Morley experiment," Am. J. Phys. 50, 987-990.

Huang, W. F. (1970), "Speed of "light" measurement," Am. J. Phys. 38, 1159-1160.

James, M. B., R. B. Ormond, and A. J. Stasch (1999), "Speed of light measurement for the myriad," Am. J. Phys. 67 (8), 681-4.

Karlov, L. (1981), "Fact and illusion in the speed-of-light determination of the Römer type," Am. J. Phys. 49, 64-66.

Karlov, L. (1984), "Note on the laboraotry Römer method for determining the speed of light," Am. J. Phys. 52, 873.

Kraftmakher, Y. (1996), "On the measurements of the velocity of light," Am. J. Phys. 64 (2), 183-4.

Lerche, I. (1975), "On a curiosity arising from Fizeau's experiment," Am. J. Phys. 43, 910-911.

Lerche, I. (1978), "The Fizeau effect: theory, experiment, and Zeeman's measurements," Am. J. Phys. 46, 1154-1163.

Mulligan, J. F. (1971), "A note on the rotating-mirror method for determining the velocty of light," Am. J. Phys. 39, 1537-1538.

Mulligan, J. F. (1976), "Some recent determinations of the velocity of light. III," Am. J. Phys. 44, 960-969.

Nakanishi, T., K. Sugiyama, and M. Kitano (2002), "Demonstration of negative group delays in a simple electronic circuit," Am. J. Phys. 70 (11), 1117-21.

Page, D. N. and C. D. Geilker (1972), "Measuring the speed of light with a laser and Pockels cell," Am. J. Phys. 40, 86-88.

Phillips, D. T. and R. Thompson (1970), "Speed of light with N2 laser," Am. J. Phys. 38, 1353.

Rogers, J., R. McMillan, R. Pickett, and R. Anderson (1969), "A determination of the speed of light by the phase-shift method," Am. J. Phys. 37, 816-822.

Rogers, J., R. McMillan, R. Pickett, and R. Anderson (1969), "Erratum: 'A determination of the speed of light by the phase-shift method' [Am. J. Phys. 37, 818 (1969)]," Am. J. Phys. 37, 1163.

Sherbini, S. S. (1980), "Measurment of the speed of light using nuclear timing techniques," Am. J. Phys. 48, 578-579.

Smith, R. V. and D. S. Edmonds, Jr. (1970), "A simple velocity of light measurement for the undergraduate laboratory," Am. J. Phys. 38, 1481-1483.

Thayer, D. (1973), "Another speed of light apparatus," Am. J. Phys. 41, 722-724.

Trudeau, J., E. C. Loh, and P. L. Hartman (1971), "Another method fot the determination of c," Am. J. Phys. 39, 877-881.

Tyler, C. E. (1969), "A pedagogical measurement of the velocity of light," Am. J. Phys. 37, 1154-1156.

Vanderkooy, J. and M. J. Beccario (1973), "An inexpensive, accurate laboratory determination of the velocity of light," Am. J. Phys. 41, 272-275.

Weiss, R. (1969), "Apparatus for direct measurement of the velocity of light," Am. J. Phys. 37, 939-940.

-radio, electromagnetic waves & antennas

To top?

Adams, A. J. (1983), "Nonionizing radiation: appropriate topic in a physics curriculum," Am. J. Phys. 51, 807-810.

Atwater, H. A. (1968), "Laboratory exercises in classical electromagnetic field theory," Am. J. Phys. 36, 672-679.

Bender, P. A. (1985), "Wooden electromagnetic waves," Am. J. Phys. 53, 279-280.

Benumof, R. (1984), "The receiving antenna," Am. J. Phys. 52, 535-538.

Bloch, S. C. (1993), "Compression of wavelets," Am. J. Phys. 61 (9), 789-798.

Bush, R. T. (1987), "The antenna formula: an application of single-slit diffraction theory," Am. J. Phys. 55, 350-351.

Falcon, E. and B. Castaing (2005), "Electrical conductivity in granular media and Branly's coherer: a simple experiment," Am. J. Phys. 73 (4), 302-7.

Hart, F. X. and K. W. Wood (1991), "Eddy current distributions: their calculation with a spreadsheet and their measurement with a dual dipole antenna probe," Am. J. Phys. 59, 461-467.

Jackson, J. D. (2006), "How an antenna launches its input power into radiation: the pattern of the Poynting vector at and near an antenna," Am. J. Phys. 74 (4), 280-8.

Kunhardt, E. E. and R. C. Cross (1979), "Demonstration of dispersive effects," Am. J. Phys. 47, 429-430.

Lonc, W. (1993), "A novel demonstration of induced EMF," Am. J. Phys. 61 (1), 90 .

Nunn, W. M. and M. Figueroa (1983), "An uncertainty demonstration with electromagnetic waves," Am. J. Phys. 51, 239-245.

Pratap, P. and G. McIntosh (2005), "Measurement of the radiation from thermal and nonthermal radio sources," Am. J. Phys. 73 (5), 399-404.

Seeley, F. B., J. E. Alexander, R. W. Connatser, J. S. Conway, and J. P. Dowling (1993), "Dipole radiators in a cavity: a radio frequency analog for the modification of atomic spontaneous emission rates between mirrors," Am. J. Phys. 61 (6), 545-50.

Uman, M. A., D. K. McLain, and E. P. Krider (1975), "The electromagnetic radiation from a finite antenna," Am. J. Phys. 43, 33-38.

Williams, L. P. (1986), "Why Ampere did not discover electromagentic induction," Am. J. Phys. 54, 306-311.

Friedt, J. -M. (2005), "Satellite image eavesdropping: a multidisciplinary science education project," Eur. J. Phys. 26 (6), 969-84.

Duff, D. A. (1981), "The use of satellites in schools and colleges," Phys. Educ. 16, 352-356.

Duff, D. A. (1982), "The use of satellites by schools and colleges - part 2," Phys. Educ. 17, 19-25.

-microwave sources, detectors & instrumentation

To top?

Collin, R. E. (1966), Foundations for Microwave Engineering (McGraw-Hill), ISBN 0-07-011801-9.

Golab, A. and C. L. Andrews (1971), "Probe antennas for microwave measurements," Am. J. Phys. 39, 121122.

Hamilton, D. R. and J. K. a. K. Knipp, J. B. Horner (1966), Klystrons and Microwave Triodes (Dover), ISBN PB.

Liao, S. Y. (1980), Microwave devices and circuits (Prentice-Hall), ISBN 0-13-581207-0, Call no. TK 7876 L43 1980.

Beers, Y. (1983), "Inexpensive sources and detectors for microwave demonstrations," Am. J. Phys. 51, 925-929.

Golab, A. and C. L. Andrews (1971), "Probe antennas for microwave measurements," Am. J. Phys. 39, 121122.

Kissinger, P. B. (1975), "Velocity modulation - a klystron analogy," Am. J. Phys. 43, 915-918.

-transmission lines & waveguides

To top?

King, R. W. P. (1965), Transmission-line theory (Dover).

Blair, J. M. (1982), "Standing and traveling waves on lumped component lines," Am. J. Phys. 50, 753-6.

Greenslade, T. B., Jr. (1989), "An intermediate experiment with a lossy transmission line," Am. J. Phys. 57, 275-6.

Holuj, F. (1982), "Simple measurements involving transmission lines," Am. J. Phys. 50, 282-3.

Janssen, H. J., L. Beerden, and E. L. M. Flerackers (1988), "Interference reflection demonstrated on a lumped LC-transmission line," Am. J. Phys. 56, 225-230.

Johnston, D. C. and B. G. Silbernagel (1969), "A quantitative transmission line experiment," Am. J. Phys. 37, 1207-1211.

Lonngren, K. E., W. F. Ames, H. C. S. Hsuan, I. Alexeff, and W. Wing (1972), "Self-similar solution of an RC transmission line," Am. J. Phys. 40, 484-486.

Martin, D. J. (1980), "Wave propagation in dispersive and attenuation media: a delay line simulation of plasma waves," Am. J. Phys. 48, 473-477.

Morgan, M. J. (1988), "Lagrangian formulation of a transmission line," Am. J. Phys. 56, 639-643.

Olson, R. (1971), "Transmission line measurement of electron paramagnetic resonance frequency," Am. J. Phys. 39, 351.

Smith, H. J. T. and J. A. Blackburn (1997), "Experimental measurements on a simulated lumped transmission line," Am. J. Phys. 65 (8), 716-25.

Watson, G. H. (1995), "Transmission line exercises for the introductory physics laboratory," Am. J. Phys. 63 (5), 423-5.

Yazaki, T. and K. Fukushima (1985), "Experimental studies of potential problems in quantum mechanics using nonlinear transmission line," Am. J. Phys. 53, 1186-1191.

Kuusela, T., J. Kietarinta, K. Kokko, and R. Laiho (1987), "Soltion experiments in a nonlinear electrical transmission line," Eur. J. Phys. 8, 27-33.

Serra, J. M., M. C. Brito, J. M. Alves, and A. M. Vallera (2004), "A wave lab inside a coaxial cable," Eur. J. Phys. 25 (5), 581-91.

Wright, H. C. (1988), "A simple apparatus for examining transmission line behavior," Phys. Educ. 23, 317.

-microwave 'optics', diffraction & interference

To top?

Andrews, C. L. (1965), "Demonstration microwave interferometers," Am. J. Phys. 33, 924-929.

Andrews, C. L. (1976), "Demonstration of physical optics with 1.0-cm wavelength," Am. J. Phys. 44, 628-629.

Blair, J. M. (1992), "Using 3-cm microwaves for optics laboratory experiments," Am. J. Phys. 60, 63-66.

Bloch, S. C. (1965), "Electromagnetic and acoustic interference analog," Am. J. Phys. 33, 164.

Bradley, G. and J. Dewitt (1968), "Models for microwave analogs of Bragg scattering," Am. J. Phys. 36, 920.

Brand, G. F. (2003), "The strip grating as a circular polarizer," Am. J. Phys. 71 (5), 452-456.

Brand, G. F. (2006), "Enhanced electromagnetic wave transmission through narrow conducting channels," Am. J. Phys. 74 (4), 289-294.

Bullen, T. G. (1969), "An improved version of the Welch-Bragg diffraction apparatus," Am. J. Phys. 37, 333.

Carpenter, C. R. (1971), "Supports for microwave diffraction studies," Am. J. Phys. 39, 120-121.

Cornick, M. T. and S. B. Field (2004), "Microwave Bragg diffraction in a model crystal lattice for the undergraduate laboratory," Am. J. Phys. 72 (2), 154-8.

Davis, L. W. and G. Patsakos (1987), "A spherical mirror Fabry-Perot interferometer for microwave demonstrations," Am. J. Phys. 55, 917-20.

Keh-Chang Chu and J. D. Noble (1997), "Comment on "Demonstrating crystal optics using microwaves on wood targets" by Benjamin S. Perkalskis and J. Reuben Freeman [Am. J. Phys. 63 (8), 762-764 (1995)]," Am. J. Phys. 65 (8).

Leming, C. W. and O. P. Hastings, III (1980), "Computer-generated microwave holograms," Am. J. Phys. 48, 938-939.

Murray, W. H. (1974), "Microwave diffraction techniques from macroscopic crystal models," Am. J. Phys. 42, 137-140.

Nunn, W. M., Jr. (1981), "High sensitivity microwave optics," Am. J. Phys. 49, 1149-1157.

Pellicer-Porres, J. and M. V. Andres (2005), "Experimental demonstration of the physics of resonant cavities," Am. J. Phys. 73 (3), 211-14.

Perkalskis, B. S. and J. R. Freeman (1995), "Demonstrating crystal optics using microwaves on wood targets," Am. J. Phys. 63 (8), 762-4.

Perkalskis, B. S. and J. R. Freeman (1996), "Diffraction for Fresnel zones and subzones using microwaves," Am. J. Phys. 64 (12), 1526-9.

Perkalskis, B. S. and J. R. Freeman (1997), "Using antilenses to demonstrate tautochronism for a microwave lens," Am. J. Phys. 65 (7), 670-2.

Rossing, T. D., R. Stadum, and D. Lang (1973), "Bragg diffraction of microwaves," Am. J. Phys. 41, 129-130.

Silbernagel, B. G. and B. W. Worster (1969), "A microwave 'optical bench'," Am. J. Phys. 37, 450.

To top?

Aksornkitti, S., H. C. S. Hsuan, and K. E. Lonngren (1969), "Dispersion of an electromagnetic pulse," Am. J. Phys. 37, 783-784.

Akylas, V., J. Kaur, and T. M. Knasel (1976), "Measurement of the longitudinal shift of radiation at total internal reflection by microwave techniques," Am. J. Phys. 44, 77-80.

Allen, P. J. (1966), "A radiation torque experiment," Am. J. Phys. 34, 1185-1192.

Arbel, D., Z. Bar-Lev, J. Felsteiner, J. Genossar, A. Peled, and A. Rosenberg (1992), "Effect of cyclotron resonance on the microwave detection properties of a glow discharge plasma," Am. J. Phys. 60, 79-82.

Elmore, W. C. (1973), "Microwave experiments for an advanced laboraotry," Am. J. Phys. 41, 865-870.

Elmore, W. C. (1975), "Cyclotron resonance of electrons trapped in a microwave cavity," Am. J. Phys. 43, 305-307.

Ffield, A. and R. Wolfson (1987), "Microwave measurements of a fluorescent lamp plasma," Am. J. Phys. 55, 637-41.

Gerritsen, H. J. and R. T. Tamaguchi (1971), "A microwave analog of optical rotation in cholesteric liquid crystals," Am. J. Phys. 39, 920-923.

Gilgenbach, R. M. (1984), "Microwave-plasma interaction experiment," Am. J. Phys. 52, 710-713.

Huppert, J. J. and G. Ott (1966), "Electromagnetic analog of the quantum-mechanical tunnel effect," Am. J. Phys. 34, 260-265.

Lord, A. E., Jr., R. M. Koerner, J. E. Brugger, J. W. Beck, and D. C. Maricovich (1977), "Moisture measurements in sand using a basic microwave optics setup," Am. J. Phys. 45, 88-89.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: optical analog for quantum mechanical barrier penetration," Am. J. Phys. 33, No. 5 - xviii.

Nunn, W. M. and M. Figueroa (1983), "An uncertainty demonstration with electromagnetic waves," Am. J. Phys. 51, 239-245.

Reichert, J. F. (1972), "Two undergraduate microwave experiments giving unexpected data," Am. J. Phys. 40, 584-587.

Turtle, R. R. (1973), "Microwave demonstrations with a coherer," Am. J. Phys. 41, 1198-1199.

-electromagnetic fields in matter & skin depth

To top?

Albiol, F., S. Navas, and M. V. Andres (1993), "Microwave experiments on electromagnetic evanescent waves and tunneling effect," Am. J. Phys. 61, 165-169.

Carr, E. F. and G. S. Harmon (1979), "Measurement of the dielectric constant of a liquid at a microwave frequency," Am. J. Phys. 47, 281-282.

Chu, K., J. D. Noble, and T. Y. Chu (1991), "Microwave demonstration of the spatial shift due to the evanescent wave," Am. J. Phys. 59, 477-478.

Friedmann, G. and H. S. Sandhu (1965), "Phase change on reflection from isotropic dielectrics," Am. J. Phys. 33, 135-138.

Goodhead, D. T., G. H. J. Wantenaar, and M. E. bacon (1976), "Refractive indices of gases at microwave frequencies," Am. J. Phys. 44, 253-258.

Haranas, Y. H. and W. P. Lonc, S. J. (1984), "Microwave attenuation in liquid media," Am. J. Phys. 52, 214-216.

Iniguez, J., V. Raposo, A. G. Flores, M. Zazo, and A. Hernandez-Lopez (2005), "Measurement of the electrical conductivity of metallic tubes by studying magnetic screening at low frequency," Am. J. Phys. 73 (3), 206-10.

Juri, L. O., V. I. Bekeris, and R. G. Steinmann (1986), "Skin depth and complex magnetic susceptibility: an experimental alternative approach," Am. J. Phys. 54, 836-8.

Kahl, G. D. and F. N. Weber, Jr. (1971), "Circuit analogy for skin effect in conductors," Am. J. Phys. 39, 321-324.

Kshatriya, A. (1976), "Transmission of normally incident light through transparent dielectric plates," Am. J. Phys. 44, 480-482.

Lonc, W. P., S. J. (1980), "Microwave propagation in dielectric fluids," Am. J. Phys. 48, 648-649.

MacDougall, J. W. (1976), "An experiment on skin effect," Am. J. Phys. 44, 978-980.

Navasquillo, J., V. Such, and F. Pomer (1989), "The transmission of a bounded microwave beam through a dielectric slab," Am. J. Phys. 57, 257-9.

Robertson, S. H. and H. A. Bickmaster (1992), "A laboratory exercise to determine the complex refractive index of layered dielectrics at 9 GHz," Am. J. Phys. 60.

Rochon, P. and N. Gauthier (1990), "Strong shielding due to an electromagnetically thin metal sheet," Am. J. Phys. 58, 276-277.

Rochon, P., T. J. Racey, and M. Zeller (1988), "Appodization effects in small angle Fraunhofer diffraction from a thin metallic edge," Am. J. Phys. 56, 559-560.

Rulf, B. (1988), "Transmission of microwaves through layered dielectrics - theory, experiment, and application," Am. J. Phys. 56, 76-80.

Saslow, W. M. (1992), "Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV," Am. J. Phys. 60, 693-711.

Singh, N. P., S. C. Gupta, and B. R. Sood (2002), "An experiment to determine the skin depth and Fermi velocity in metals," Am. J. Phys. 70 (8), 845-6.

Streib, J. F. (1965), "Apparatus notes: Fresnel's reflecions relations," Am. J. Phys. 33, No. 4 - xxv.

Thompson, F. and H. Tsui (1986), "Transmission of normally incident microwave radiation through parallel plates of material," Am. J. Phys. 54, 712-5.

Walsh, P. J. and V. P. Tomaselli (1990), "Theory of microwave surface impedance in superconductors and normal metals," Am. J. Phys. 58, 644-650.

Wangsness, R. K. (1982), "Propogation of an electromagnetic wave in a slowly moving conducting dielectric," Am. J. Phys. 50, 745-747.

Wiederick, H. D. and N. Gauthier (1983), "Frequency dependence of the skin depth in a metal cylinder," Am. J. Phys. 51, 175-176.

Yan, K. L. and W. P. Lonc, S. J. (1975), "Microwave Faraday rotation," Am. J. Phys. 43, 718-720.

Young, C. T. (1980), "Electromagnetic wave propagation in aluminum," Am. J. Phys. 48, 417.

Ziolkowska, E. A. and H. Szydlowski (1984), "Remarks on the skin effect experiment in an undergraduate laboratory," Am. J. Phys. 52, 857.

-radar & Doppler shift measurements

To top?

Eaves, J. L. and E. K. Reedy, Eds., Principles of Modern Radar (van Nostrand Reinhold), ISBN 0-442-22104-5.

Members of the Staff of Bell Telephone Labs (1949), Radar systems and components (Van Nostrand).

Skolnik, M. (1990), Radar handbook, 2nd ed. (McGraw-Hill), ISBN 0-07-057913-X, Call no. TK 6575 R262 1990.

Bates, H. E. (1977), "Using the Doppler effect in the microwave region to study motion on a linear air track," Am. J. Phys. 45, 711-715.

Bloch, S. C. (1973), "Introduction to chirp concepts with a cheap chirp radar," Am. J. Phys. 41, 857-864.

Fowler, J. M. (1969), "Materials for a radar ranging experiment," Am. J. Phys. 37, 712-715.

Manchester, F. D. (1965), "Simple Doppler-shift apparatus using microwves," Am. J. Phys. 33, 499-500.

Simpson, R. E. (1969), "Single antenna x-band Doppler shift apparatus," Am. J. Phys. 37, 744-747.

Taylor, K. N. R. (1970), "Frequency doubling in the X-band Doppler shift experiment," Am. J. Phys. 38, 1108-1110.

Weber, F. N., P. Helminger, and D. L. Moulds (1980), "Student microwave experiments involving the Doppler effect," Am. J. Phys. 48, 737-738.

To top?