08 Atoms molecules

Instructional Experiments on

Atomic & Molecular Physics

(and some related theory papers)

Topics

-optical spectroscopy (atomic & molecular)

To top?

Anderson, W. F., Jr. (1974), "Spectral distribution of light emitted by various sources - a take-home experiment," Am. J. Phys. 42, 1127-1128.

Baker, D. J. (1966), "Time dependence of fluorescent lamp emission - a simple demonstration," Am. J. Phys. 34, 627.

Bates, H. E. (1984), "Atomic spectroscopy and holography: a combined laboratory experiment at the intermediate undergraduate level," Am. J. Phys. 52, 456-459.

Benko, Z., M. Hilbert, and Z. Bor (2000), "New considerations on Talbot's bands," Am. J. Phys. 68 (6), 513-520.

Breslow, R. (1976), "Street light spectroscopy," Am. J. Phys. 44, 1227.

Chang, R. and W. R. Moomaw (1976), "Phosphorescence and electron paramagnetic resonance study of a photoexcited triplet state: advanced undergraduate experiment in molecular physics," Am. J. Phys. 44, 455-459.

Chin-Bing, S. A., C. E. Head, and A. E. Green, Jr. (1970), "Radiative lifetimes of some electronic states of helium," Am. J. Phys. 38, 352-359.

Crawford, F. S. (1971), "Variations on a famous white light experiment of Isaac Newton," Am. J. Phys. 39, 1538-1539.

de Izarra, C. and O. Vallee (1994), "On the use of linear CCD image sensors in optics experiments," Am. J. Phys. 62 (4), 357-61.

de Levie, R. (2004), "On deconvolving spectra," Am. J. Phys. 72 (7), 910-15.

Eaton, B. G. (1974), "Simple setup for absorption spectroscopy," Am. J. Phys. 42, 608-610.

Fletcher, C. D. and C. Orzel (2005), "Construction and calibration of a low cost Fabry-Perot interferometer for spectroscopy experiments," Am. J. Phys. 73 (12), 1135-8.

George, S. (1975), "Determination of m, e/m, and Mp/m by the study of the isotope structure in hydrogen," Am. J. Phys. 43, 885-887.

George, S. and M. Voelker (1978), "Calibration of prismatic spectra by means of Edser-Butler bands," Am. J. Phys. 46, 1280-1281.

George, S. and M. Voelker (1980), "Isotope shift in the spectrum of helium," Am. J. Phys. 48, 57-58.

George, S. and N. Krishnamurthy (1989), "Absorption spectrum of iodine vapor - an experiment," Am. J. Phys. 57, 850-3.

George, S., J. E. Fredrickson, and A. W. Tucker (1971), "Isotope structure in Tungsten - an experiment," Am. J. Phys. 39, 135-137.

Groft, J. C. (1968), "A fast grating spectrograph for use in undergraduate optics laboratories," Am. J. Phys. 36, 1014.

Grossberg, A. B. (1969), "An improved computer version of the prism spectrometer experiment," Am. J. Phys. 37, 559.

Hayn, C. H. (1983), "Aerographic film for spectrographs," Am. J. Phys. 51, 669 .

Kaylor, H. M. (1966), "An evaluation of the Barnes Engineering Company model ES-100 educational spectrometer," Am. J. Phys. 34, 74-75.

Klempt, E., KĂĽhlm Th., Leym R., and R. Schulze (1979), "Quantum theory of hyperfine structure transitions in diatomic molecules," Am. J. Phys. 47, 876-882.

Kruglak, H. (1984), "More about sodium light sources," Am. J. Phys. 52, 762.

Lewis, E. L. (1977), "Hyperfine structure in the triplet states of cadmium," Am. J. Phys. 45, 38-40.

Lewis, E. L., C. W. P. Palmer, and J. L. Cruickshank (1994), "Iodine molecular constants from absorption and laser fluorescence," Am. J. Phys. 62 (4), 350-6.

Lukem K. L., S. George, and A. W. Tucker (1974), "Quantum defect and fine structure in the arc spectrum of rubidium - an experiment," Am. J. Phys. 42, 400-407.

Luo, W. W. and H. J. Gerritsen (1993), "Seeing the Fraunhofer lines with only a diffraction grating and a slit," Am. J. Phys. 61 (7), 632-6.

Mulligan, J. F. (1974), "Hyperfine structure in cesium - an advanced laboratory experiment," Am. J. Phys. 42, 883-885.

Mulligan, J. F. (1975), "Standard wavelength source for spectroscopy," Am. J. Phys. 43, 1111.

Pollack, S. P. and E. Y. Wong (1971), "Experiment on hydrogen and deuterium fine stucture," Am. J. Phys. 39, 1386-1387.

Pollack, S. P. and E. Y. Wong (1971), "Experiments on hyperfine structure in optical spectroscopy," Am. J. Phys. 39, 1388-1389.

Raymonda, J. W. and D. C. Hofer (1973), "A programmed exercise in vibration-rotation spectroscopy for undergraduates," Am. J. Phys. 41, 716-717.

Schreiber, C. L., E. Y. Wong, and D. Johnston (1971), "Low-cost high-resolution Ebert spectrographs for a teaching laboratory," Am. J. Phys. 39, 1333-1336.

Seeley, F. B., J. E. Alexander, R. W. Connatser, J. S. Conway, and J. P. Dowling (1993), "Dipole radiators in a cavity: a radio frequency analog for the modification of atomic spontaneous emission rates between mirrors," Am. J. Phys. 61 (6), 545-50.

Vollmer, M. (2005), "Hot gases: the transition from line spectra to thermal radiation," Am. J. Phys. 73 (3), 215-23.

Warren, K. L. and T. E. Graedel (1966), "Spectrographic analysis with a small telescope and transmission grating," Am. J. Phys. 34, 1056-1057.

Wiggins, T. A. and C. E. Mulfinger, Jr. (1979), "A less expensive sodium laboratory source," Am. J. Phys. 47, 197-198.

Wu, M. and S. Yang (1986), "Dispersion and resolving power of a grating," Am. J. Phys. 54, 735-736.

Zadler, B. J., A. Gret, and J. A. Scales (2005), "Spectroscopy versus interferometry: resolving small changes," Am. J. Phys. 73 (9), 837-44.

Zajonc, A. G. (1982), "Measurement of spectral line splittings with scanning, student-grade Fabry-Perot interferometer," Am. J. Phys. 50, 404-6.

Buckley, U. M. T. and F. A. Deeney (1998), "The plane reflection grating revisited," Eur. J. Phys. 19 (3), 231-5.

Elliott, K. H. and C. A. Mayhew (1998), "The use of commercial CCD cameras as linear detectors in the physics undergraduate teaching laboratory," Eur. J. Phys. 19 (2), 107-17.

Haag, H. W., E. W. Otten, M. Schick, and Ch. Weinheimer (1999), "Discussion of dispersion relations in atomic spectra with respect to experimental demonstration," Eur. J. Phys. 20 (3), 221-9.

Podoleanu, A. G., S. R. Taplin, D. J. Webb, and D. A. Jackson (1994), "Channelled spectrum display using a CCD array for student laboratory demonstrations," Eur. J. Phys. 15 (5), 266-71.

Rogers, G. L. (1994), "A visual demonstration of the simple quantum theory of the hydrogen atom," Eur. J. Phys. 15 (3), 110 .

Series, G. W. and D. N. Stacey (1982), "Atomic hydrogen and fundamental physical constants," Eur. J. Phys. 3, 129-135.

Umesh, K. S. and K. Srinivasan (1997), "Ghost lines in holographic spectroscopy," Eur. J. Phys. 18 (6), 462-5.

Beynon, J. (1991), "Comment n Schuster's technique for focusing the prism spectrometer," Phys. Educ. 26, 66-68.

Davies, G. R. (1983), "Some colourful television physics demonstrations," Phys. Educ. 18, 84-85.

Gruber, A. D. and R. J. Hamilton (1992), "Improvements in a simply constructed prism spectrometer,"Phys. Educ. 27, 31-34.

Winn, K. (1990), "A versatile computer-interfaced spectrometer," Phys. Educ. 25, 122-125.

-line shapes, broadening & deconvolution

To top?

Berg, C. L. and R. Chang (1984), "Demonstration of Maxwell distribution law of velocity by spectral line shape analysis," Am. J. Phys. 52, 80-81.

Boreen, A. L., R. L. Coons, D. J. Ulness, and B. A. Luther (2000), "Investigating collisional broadening of spectral lines using a tuning fork: An undergraduate laboratory," Am. J. Phys. 68 (8), 768-771.

Talmi, A., A. C. Tanner, J. Felsteiner, and R. Opher (1979), " Generalization of Lloyd's graphical deconvolution method to asymmetric instrumental functions," Am. J. Phys. 47, 659-661.

-Fourier transform spectroscopy

To top?

Albergotti, J. C. (1972), "Fourier transform spectroscopy using a Michelson interferometer," Am. J. Phys. 40, 1070-1078.

Bergsten, R. and P. SLane (1978), "Fourier-transform spectrscopy with inexpensive interferometers," Am. J. Phys. 46, 304-305.

Blatt, J. H., D. S. Porterfield, and D. J. Ulmer (1973), "A scanning interferometer and high gain photodiode detector-amplifier for Fourier transform spectroscopy," Am. J. Phys. 41, 116-117.

D'Astous, Y. and M. Blanchard (1982), "Properly used "aliasing" can give better resolution from fewer points in Fourier transform spectroscopy," Am. J. Phys. 50, 464-5.

Davis, J. and T. M. Rynne (1977), "Visible spectroscopic studies with Fourier transform interferometry," Am. J. Phys. 45, 166-169.

Harvey, A. R., M. Begbie, and M. J. Padgett (1994), "Stationary Fourier transform spectrometer for use as a teaching tool," Am. J. Phys. 62 (11), 1033-6.

Layton, R. G. and J. K. Brower (1975), "Fourier-transform spectroscopy using any old Michelson interferometer," Am. J. Phys. 43, 180.

Oelfke, W. C. (1975), "Fourier spectroscopy: a simple analysis technique," Am. J. Phys. 43, 786-789.

-laser spectroscopy

To top?

Corney, A. (1977), Atomic and laser spectroscopy (Oxford), ISBN 0-19-851148-5 (pb), Call no. QC 454 A8.

Demtroder, W. (1981), Laser Spectroscopy: basic concepts and instrumentation (Springer-Verlag), ISBN 0-387-10343-0, Call no. QC 454 L3 D46.

Levenson, M. D. and S. S. Kano (1988), Introduction to Nonlinear Laser Spectroscopy, revised edition (Academic), ISBN 0-12-444722-8, Call no. QC 454 L3 L48 1987.

Budker, D., D. J. Orlando, and V. Yashchuk (1999), "Nonlinear laser spectroscopy and magneto-optics," Am. J. Phys. 67 (7), 584-592.

Camparo, J. C. and C. M. Klimcak (1983), "Laser spectroscopy on a "shoestring"," Am. J. Phys. 51, 1077-1081.

Gupta, R. (1991), "Resource letter LS-1: laser spectroscopy," Am. J. Phys. 59, 874-886.

Gustafsson, U., J. Alnis, and S. Svanberg (2000), "Atomic spectroscopy with violet laser diodes," Am. J. Phys. 68 (7), 660-4.

Leahy, C., A. J. Todd Hastings, and P. M. Wilt (1997), "Temperature-dependence of Doppler-broadening in rubidium: an undergraduate experiment," Am. J. Phys. 65 (5), 367-71.

MacAdam, K. B., A. Steinbach, and C. Wieman (1992), "A narrow band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111.

Olson, A. J., E. J. Carlson, and S. K. Mayer (2006), "Two-photon spectroscopy of rubidium using a grating-feedback diode laser," Am. J. Phys. 74 (3), 218-23.

Payton, B. W. (1992), "Two-quantum absorption: an undergraduate's experiment in nonlinear optics," Am. J. Phys. 60, 1033-1039.

Preston, D. W. (1996), "Doppler-free saturated absorption: laser spectroscopy," Am. J. Phys. 64 (11), 1432-6.

Rao, G. N., M. N. Reddy, and E. Hecht (1998), "Atomic hyperfine structure studies using temperature/current tuning of diode lasers: An undergraduate experiment," Am. J. Phys. 66 (8), 702-12.

Razdan, K. and D. A. Van Baak (1999), "Demonstrating optical saturation and velocity selection in rubidium vapor," Am. J. Phys. 67 (9), 832-6.

Terrell, M. and M. F. Masters (1996), "Laser spectroscopy of the cesium dimer as a physics laboratory experiment," Am. J. Phys. 64 (9), 1116-20.

Haag, H. W., E. W. Otten, M. Schick, and Ch. Weinheimer (1999), "Dispersion relations measured at the D_2 resonance of ^85Rb," Eur. J. Phys. 20 (3), 231-9.

-laser cooling & trapping

To top?

Feng, P. and T. Walker (1995), "Inexpensive diode laser microwave modulation for atom trapping," Am. J. Phys. 63 (10), 905-8.

Mellish, A. S. and A. C. Wilson (2002), "A simple laser cooling and trapping apparatus for undergraduate laboratories," Am. J. Phys. 70 (9), 965-71.

Vale, C. J., M. R. Walkiewicz, P. M. Farrell, and R. E. Scholten (2002), "One-dimensional laser cooling of an atomic beam in a sealed vapor cell," Am. J. Phys. 70 (1), 71-5.

Vredenbregt, E. J. D. and K. A. H. van Leeuwen (2003), "Laser cooling and trapping visualized," Am. J. Phys. 71 (8), 760-5.

Wieman, C., G. Flowers, and S. Gilbert (1995), "Inexpensive laser cooling and trapping experiment for undergraduate laboratories," Am. J. Phys. 63 (4), 317-30.

Stenholm, S. (1988), "Laser cooling and trapping," Eur. J. Phys. 9, 232-233.

-infrared & microwave spectroscopy

To top?

Möller, K. D. and W. G. Rothschild (1971), Far-infrared spectroscopy (Wiley), ISBN 0-471-61313-4.

Robinson, L. C. (1973), Ed., Physical Principles of Far-Infrared Radiation, Methods of Experimental Physics, v. 10 (Academic).

Smith, R. A., Jones. F. E., and R. P. Chasmar (1968), The detection and measurement of infra-red radiation, 2nd ed. (Oxford).

Raymonda, J. W. and D. C. Hofer (1973), "A programmed exercise in vibration-rotation spectroscopy for undergraduates," Am. J. Phys. 41, 716-717.

-microwave spectroscopy

To top?

Kukolich, S. G. (1973), "Microwave spectroscopy and molecular structure: some undergraduate laboratory projects," Am. J. Phys. 41, 1084-1086.

Storey, J. W. V., M. C. B. Ashley, M. Naray, and J. P. Lloyd (1994), "21 cm line of atomic hydrogen," Am. J. Phys. 62 (12), 1077-81.

-Raman spectroscopy

To top?

Stencel, J. M. (1990), Raman spectroscopy for catalysis (Van Nostrand Reinhold), ISBN 0-442-20514-7, Call no. QD 96 R34 S74 1989.

Strommen, D. P. and K. Nakamoto (1984), Laboratory Raman Spectroscopy (Wiley), ISBN 0-471-81323-0, Call no. QD 96 R34 N35 1984.

Compaan, A., A. Wagoner, and A. Aydinli (1994), "Rotational Raman scattering in the instructional laboratory," Am. J. Phys. 62 (7), 639-45.

Edwards, D. F. and C. Y. She (1972), "Laser-excited Raman spectroscopy," Am. J. Phys. 40, 1389-1399.

Feinberg, R. (1990), "A simple apparatus for observing the Raman effect," Am. J. Phys. 58, 893.

Rayside, J. S. and W. H. Fletcher (1975), "Method for constructing curved glass slits," Am. J. Phys. 43, 1111-1112.

Singha, A., P. Dhar, and A. Roy (2005), "A nondestructive tool for nanomaterials: Raman and photoluminescence spectroscopy," Am. J. Phys. 73 (3), 224-33.

Voor, R., L. Chow, and A. Schulte (1994), "Micro-Raman spectroscopy in the undergraduate research laboratory," Am. J. Phys. 62 (5), 429-34.

Blond, J. P. and D. M. Boggett (1980), "A simple Raman spectrometer," Phys. Educ. 15, 181-184.

-ultraviolet spectroscopy

To top?

Green, A. E. S. (1966), The Middle Ultraviolet: its science and technology (Wiley).

Phillips, R. (1983), Sources and applications of ultraviolet radiation (Academic), ISBN 0-12-553880-4, Call no. QD 708.2.

Zaidel, A. N. and E. Y. Shreider (1970), Vacuum Ultraviolet Spectroscopy (Humphrey Science Publishers), ISBN 0-250-39973-3.

Stevenson, J. R. and R. J. Bartlett (1972), "An undergraduate vacuum ultraviolet spectrscopy laboraotry," Am. J. Phys. 40, 172-178.

Hereman, W. and E. Tieghem (1992), "The invisible made visible <white paper fluorescence excited by UV spectra>," Phys. Educ. 27.

-fluorescence & phosphorescence

To top?

Chikkur, G. C., M. T. Lagare, and N. Umakantha (1979), "Fluorescence spectrum of NaI(Tl) crystal: a laboratory experiment," Am. J. Phys. 47, 715-717.

Edmondson, K., S. Agoston, and R. Ranganathan (1996), "Impurity level lifetime measurements using a lock-in amplifier," Am. J. Phys. 64 (6), 787-91.

Ejnisman, R. and N. P. Bigelow (1997), "Is it possible to detect permanent electric dipole moments using fluorescence measurements?," Am. J. Phys. 65 (9), 856-61.

Lewis, E. L., C. W. P. Palmer, and J. L. Cruickshank (1994), "Iodine molecular constants from absorption and laser fluorescence," Am. J. Phys. 62 (4), 350-6.

Rieger, R., C. Rocker, and G. U. Nienhaus (2005), "Fluctuation correlation spectroscopy for the advanced physics laboratory," Am. J. Phys. 73 (12), 1129-34.

Sikora, P., P. Wiewior, P. Kowalczyk, and C. Radzewicz (1997), "Laser-induced fluorescence of I_2 molecule in an undergraduate student laboratory," Eur. J. Phys. 18 (1), 32-9.

Hereman, W. and E. Tieghem (1992), "The invisible made visible <white paper fluorescence excited by UV spectra>," Phys. Educ. 27.

-x-ray fluorescence and inner-shell spectroscopy

To top?

Conover, C. W. S. and J. Dudek (1996), "An undergraduate experiment on X-ray spectra and Moseley's law using a scanning electron microscope," Am. J. Phys. 64 (3), 335-8.

Dasgupta, M., B. K. Sharma, B. L. Ahuja, and F. M. Mohammad (1988), "Some experiments on x-ray fluorescence for the student laboratory," Am. J. Phys. 56, 245-51.

Fetzer, H. D., D. L. Parker, and K. C. Stuart (1975), "Student x-ray fluorescence experiments," Am. J. Phys. 43, 323-327.

Gudennavar, S. B., N. M. Badiger, S. R. Thontadarya, and B. Hanumaiah (2003), "Verification of Bohr's frequency condition and Moseley's law: an undergraduate laboratory experiment," Am. J. Phys. 71 (8), 822-5.

Kerur, B. R., H. A. Jahagirdar, S. R. Thontadarya, and B. Hanumaiah (1989), "Identification of elements by X-ray interaction - a laboratory experiment," Am. J. Phys. 57, 1148-1149.

Kiszenick, W. and N. Wainfan (1974), "X-ray emission and absorption for introductory modern physics courses," Am. J. Phys. 42, 161-166.

Nayak, S. V. and N. M. Badiger (2005), "A novel method for determining the K-absorption edge using bremsstrahlung radiation," Am. J. Phys. 73 (4), 369-71.

Ouseph, P. J. and K. H. Hoskins (1982), "Moseley's law," Am. J. Phys. 50, 276-7.

Rodriquez, R. and A. Clark (1987), "F center experiments from soft x-rays," Am. J. Phys. 55, 186-7.

-Zeeman & Stark effect

To top?

Gemmen, G. J. and N. Rouze (1996), "Analysis of idealized Zeeman quantum beat experiments in the advanced laboratory," Am. J. Phys. 64 (2), 147-50.

George, S. (1973), "Normal and anomalous Zeeman effect laboratory experiments," Am. J. Phys. 41, 423-425.

Manka, C. K. and K. J. Mittelstaedt (1973), "A suitable mercury line for the Zeeman effect," Am. J. Phys. 41, 287-288.

Pollack, S. P. and E. Y. Wong (1971), "Light source for demonstrating Zeeman effect in a teaching laboratory," Am. J. Phys. 39, 13871388.

Butcher, R. J., S. Adams, G. Seddon, J. A. Golby, and D. R. Massey (1987), "The Zeeman effect and optical pumping in atomic rubidium: a teaching experiment in quantum physics," Eur. J. Phys. 8, 253-257.

Kox, A. J. (1997), "The discovery of the electron. II. The Zeeman effect," Eur. J. Phys. 18 (3), 139-44.

-optical pumping

To top?

Benumof, R. (1965), "Optical pumping theory and expreiments," Am. J. Phys. 33, 151-160.

de Zafra, R. L. (1971), "Axes of quantization in optical pumping experiments," Am. J. Phys. 39, 968-969.

Donnally, B. L. (1965), "Apparatus notes: Easy to handle source of potassium, rubidium, and cesium," Am. J. Phys. 33, No. 3 - xxii.

Nagel, M. and F. E. Haworth (1966), "Advanced laboraotry experiments on optical pumping of Rubidium atoms - Part I: magnetic resonance," Am. J. Phys. 34, 553-558.

Nagel, M. and F. E. Haworth (1966), "Advanced laboraotry experiments on optical pumping of Rubidium atoms - Part II: free precession," Am. J. Phys. 34, 559-561.

Butcher, R. J., S. Adams, G. Seddon, J. A. Golby, and D. R. Massey (1987), "The Zeeman effect and optical pumping in atomic rubidium: a teaching experiment in quantum physics," Eur. J. Phys. 8, 253-257.

-photoelectron spectroscopy

To top?

Carlson, T. A. (1975), Photoelectron and Auger Spectroscopy (Plenum), ISBN 0-306-33901-3, Call no. QD 96 E44 C3.

Bahr, J. L. and A. J. Blake (1987), "Teaching wave functions in the laboratory," Am. J. Phys. 55, 1118-21.

Ebel, M. F. (1979), "A students' experiment for the determination of the rest energy E0 of electrons," Am. J. Phys. 47, 96-98.

Zangara, R. and E. Lanzara (1993), "Photoemission energy distribution measurements in a simple metal: a modern physics undergraduate laboratory," Am. J. Phys. 61 (12), 1114-18.

Euler, M. (1980), "A simple appearance potential spectrometer," Eur. J. Phys. 1, 18-21.

-Franck-Hertz experiment & electron-impact spectroscopy

To top?

Buhr, W., W. Klein, and S. Pressler (1983), "Electron impact excitation and uv emission in the Franck-Hertz experiment," Am. J. Phys. 51, 810-814.

Caley, W. J., Jr. (1972), "Suggestions on "An automated Franck-Hertz experiment" [R. E. Adelberger & K. F. Kinsey, Am. J. Phys. 40, 349 (1972)]," Am. J. Phys. 40, 1877-1878.

Carpenter, K. H. (1975), "An automated Franck-Hertz experiment using an X-Y recorder," Am. J. Phys. 43, 190-191.

Donnally, B. L. (1966), "Comparison of Franck-Hertz tubes and apparatus," Am. J. Phys. 34, 366-367.

Fedak, W., D. Bord, C. Smith, D. Gawrych, and K. Lindeman (2003), "Automation of the franck-hertz experiment and the tel-X-ometer x-ray machine using LABVIEW," Am. J. Phys. 71 (5), 501-6.

Genolio, R. J. (1973), "Average energy of electrons in a Franck-hertz tube," Am. J. Phys. 41, 288-290.

Hanne, G. F. (1988), "What really happens in the Franck-Hertz experiment with mercury?," Am. J. Phys. 56, 696-700.

Huebner, J. S. (1976), "Comment on the Franck-Hertz experiment," Am. J. Phys. 44, 302-303.

Kukolich, S. G. (1968), "Demonstration of the Ramsauer-Townsend effect in a xenon thyratron," Am. J. Phys. 36, 701-703.

Liu, F. H. (1987), "Franck-Hertz experiment with higher excitation level measurements," Am. J. Phys. 55, 366-9.

Martin, A. D. and P. J. Quinn (1984), "Electron spectroscopy using a Franck-Hertz tube," Am. J. Phys. 52, 1114-1116.

McMahon, D. R. A. (1983), "Elastic electron-atom collision effects in the Franck-Hertz experiment," Am. J. Phys. 51, 1086-1091.

Rapior, G., K. Sengstock, and V. Baev (2006), "New features of the Franck-Hertz experiment," Am. J. Phys. 74 (5), 423-8.

Rosenfeld, J. and C. Tyler (1965), "Homemade Franck-Hertz tube," Am. J. Phys. 33, 849-850.

Taylor, N., K. D. Bartle, and D. Mills (1981), "Energy levels in helium and neon atoms by an electron-impact method," Am. J. Phys. 49, 265-268.

Woolsey, G. A. (1971), "An extension of the Ramsauer-Townsend experiment in a xenon thyratorn," Am. J. Phys. 39, 558-560.

Nicoletopoulos, P. (2002), "Critical potentials of mercury with a Franck-Hertz tube," Eur. J. Phys. 23 (5), 533-48.

Nicoletopoulos, P. (2004), "The '0.4 eV' shape resonance of electron scattering from mercury in a Franck-Hertz tube," Eur. J. Phys. 25 (3), 373-83.

-atomic and molecular beams

To top?

Ramsey, N. F. (1956), Molecular Beams (Oxford Univ. Press).

Estermann, I. (1975), "History of molecular beam research: personal reminiscences of the important evolutionary period 1919-1933," Am. J. Phys. 43, 661-671.

Jeong, T. H., b. Donnally, and Committee on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: atomic beam apparatus," Am. J. Phys. 33, No. 11 - xviii.

Johnson, N. B. and J. C. Zorn (1969), "The free fall of atoms," Am. J. Phys. 37, 554-558.

Laine, D. C., M. J. Truman, and S. Hope (1980), "Crystal video detection of stimulated emission and oscillation in a molecular beam," Am. J. Phys. 48, 942-944.

Leiby, C. C., Jr. and A. L. Besse (1979), "Molecular beams and effusive flows," Am. J. Phys. 47, 791-796.

McCarthy, I. E. and E. Wigold (1983), " A real "thought" experiment for the hydrogen atom," Am. J. Phys. 51, 152-155.

Ramsey, N. F. (1988), ""New teaching technologies and research with molecular beams," Norman F. Ramsey's acceptance speech for the 1988 oersted Medal presented by the AAPT, 28 January 1988," Am. J. Phys. 56, 875-879.

Barnett, S. M. and N. J. Mason (1990), "Atoms in flight," Phys. Educ. 25, 114-118.

-electron & atom & molecule collisions

To top?

Dickinson, J. T., J. M. Lockhart, and J. C. Zorn (1971), "Use of metastable atom probe for the study of electron dynamics," Am. J. Phys. 39, 993-996.

Donnelly, , Denis P., J. C. Pearl, and J. C. Zorn (1971), "Time-of-flight experiments in molecular motion and electron-atom collision kinematics," Am. J. Phys. 39, 983-992.

Gee, M. J. (1969), "Mechanical demonstration of inelastic collisions and excited states," Am. J. Phys. 37, 562-563.

-nuclear magnetic resonance

To top?

Dixon, W. T. (1972), Theory and Interpretation of Magnetic Resonance Spectra (Plenum), ISBN 0-306-30567-4.

Schumacher, R. T. (1970), Introduction to Magnetic Resonance (Benjamin), ISBN 0-8053-8505-3 (pb).

Slichter, C. P. (1990), Principles of Magnetic Resonance: third enlarged and updated edition (Springer), ISBN 0-387-50157-6, Call no. QC 762 S55 1989.

Biscegli, C., H. Panepucci, H. A. Farach, C. P. Poole, and Jr. (1982), "Advanced laboratory NMR spectrometer with applications," Am. J. Phys. 50, 48-50.

Bruin, F. and H. Khunaysir (1970), "Superregenerative FET oscillator for NQR, ESR, NMR," Am. J. Phys. 38, 1480-1481.

Callaghan, P. T. and M. Le Gros (1982), "Nuclear spins in the earth's magnetic field," Am. J. Phys. 50, 709-13.

Correll, M. (1965), "Apparatus notes: Mechanical analog of electron or nuclear spin resonance," Am. J. Phys. 33, No. 4 - xxvi.

Davies, G. R. (1990), "Comparison of the gyromagnetic ratios of the 1H and 19F nuclei - a student experiment (L)," Am. J. Phys. 58, 1212-3.

Daw, H. A. (1965), "Two air-supported devices for physics laboratories and for physics demonstrations," Am. J. Phys. 33, 322-326.

du Bois, R. (1971), "Inexpensive pulsed nuclear magnetic resonance spectrometer," Am. J. Phys. 39, 1178-1181.

Grivet, J. -P. (1993), "Simulation of magnetic resonance experiments," Am. J. Phys. 61 (12), 1133-9.

Haueisen, D. C. and T. D. Bonifeld (1975), "Spin and photon echos," Am. J. Phys. 43, 824-829.

Havel, T. F., D. G. Cory, S. Lloyd, N. Boulant, E. M. Fortunato, M. A. Pravia, G. Teklemariam, Y. S. Weinstein, A. Bhattacharyya, and J. Hou (2002), "Quantum information processing by nuclear magnetic resonance spectroscopy," Am. J. Phys. 70 (3), 345-62.

Ijaz-ur-Rahman (1979), "Transistorized marginal oscillator NMR detector with improved performance," Am. J. Phys. 47, 1004.

Klein, W. (1990), "Nuclear magnetic resonance: free-induction decay and spin echoes in a 0.05-T magnetic field," Am. J. Phys. 58, 143-7.

Lowe, I. J. and D. Whitson (1966), "Simple pulsed nuclear-magnetic resonance spectrometer," Am. J. Phys. 34, 335-338.

Manasse, F. K. and E. W. Kyllonen (1972), "A simple, low-cost method of measuring ferromagnetic resonance," Am. J. Phys. 40, 1171-1172.

Muller, B. H., J. D. Noble, L. J. Burnett, J. F. Harmon, and D. R. McKay (1974), "Simple, spin-echo spectrometer," Am. J. Phys. 42, 58-64.

Norberg, R. E. (1965), "Resource letter NMR - EPR -1 on nuclear magnetic resonance and electron paramagnetic resonance," Am. J. Phys. 33, 71-75.

Proffitt, M. H. and W. C. Gardiner, Jr. (1966), "Nuclear magnetic resonance detector for demonstrations or magnetic field measurements," Am. J. Phys. 34, 163-164.

Sandhu, H. S. and H. Peemoeller (1974), "A demonstration model of magnetic resonance," Am. J. Phys. 42, 1057-1061.

Shanks, J. G. and F. Tsay, Rhim, W. K. (1980), "Miniature magnet assembly for NMR-ESR spectroscopy," Am. J. Phys. 48, 620-622.

Siegel, M. M. (1975), "Simple demonstrations for frequency sweeping, frequency modulation, and detecting NMR signals," Am. J. Phys. 43, 747-748.

Siegel, M. M. (1975), "Use of a NMR spectrometer as an oscillometer," Am. J. Phys. 43, 748.

Velten, J. M. and H. S. Story (1965), "Some experiments in nuclear quadrupole resonance," Am. J. Phys. 33, 32-35.

Vogel, B. E., F. S. C. and O. S. Leifson (1970), "Line loading effects in NMR," Am. J. Phys. 38, 1043-1044.

Wright, J. J. and D. van der Beken (1973), "A classical magnetic resonance self-oscillating magnetometer," Am. J. Phys. 41, 260-264.

Ennemoser, O. and W. Ambach (1991), "Magnetic resonance imaging in medical education: a demonstration experiment for students," Eur. J. Phys. 12, 52-53.

Firth, L. D. (1982), "Relaxation time measurement by continuous-wave NMR," Eur. J. Phys. 3, 10-13.

Michaelis, M. M. (1983), "Permanent magnets help model masers and NMR," Phys. Educ. 18, 82-84.

-electron paramagnetic resonance

To top?

Alger, R. S. (1968), Electron paramagnetic resonance: techniques and applications (Wiley).

Pake, G. E. (1962), Paramagnetic Resonance (Benjamin), ISBN PB.

Abraham, D. R., L. M. Bates, and W. H. Rauckhorst (1978), "Electron paramagnetic resonance and the general physics laboratory," Am. J. Phys. 46, 184.

Bruin, F. and H. Khunaysir (1970), "Superregenerative FET oscillator for NQR, ESR, NMR," Am. J. Phys. 38, 1480-1481.

Chang, R. and W. R. Moomaw (1976), "Phosphorescence and electron paramagnetic resonance study of a photoexcited triplet state: advanced undergraduate experiment in molecular physics," Am. J. Phys. 44, 455-459.

Collins, L. A., M. A. Morrison, and P. L. Donoho (1974), "Advanced undergraduate-laboratory experiment on electron spin resonance in single-crystal ruby," Am. J. Phys. 42, 560-571.

Correll, M. (1965), "Apparatus notes: Mechanical analog of electron or nuclear spin resonance," Am. J. Phys. 33, No. 4 - xxvi.

Dupress, R. and P. K. Grannell (1970), "A simple ESR spectrometer which uses sample heating to detect magnetic resonance," Am. J. Phys. 38, 924-926.

Hogg, R. D. (1973), "A low cost X-band IMPATT diode marginal oscillator for EPR," Am. J. Phys. 41, 224-230.

Kukolich, S. G. (1969), "Simple ESR apparatus for low fields," Am. J. Phys. 37, 222-223.

Norberg, R. E. (1965), "Resource letter NMR - EPR -1 on nuclear magnetic resonance and electron paramagnetic resonance," Am. J. Phys. 33, 71-75.

Olson, R. (1971), "Transmission line measurement of electron paramagnetic resonance frequency," Am. J. Phys. 39, 351.

Rupp, L. W., Jr., K. R. Wittig, and W. M. Walsh, jr. (1976), "Miniature magnet for electron spin resonance experiments," Am. J. Phys. 44, 655-657.

Rupp, L. W., Jr., W. M. Walsh, Jr., and A. Steinfeld (1970), "Simplified microwave frequency electron spin resonance spectrometer," Am. J. Phys. 38, 238-242.

Shanks, J. G. and F. Tsay, Rhim, W. K. (1980), "Miniature magnet assembly for NMR-ESR spectroscopy," Am. J. Phys. 48, 620-622.

Sohl, J. E. (1997), "A protective circuit for the Leybold electron spin resonance apparatus," Am. J. Phys. 65 (5).

Willis, J. S. (1980), "Undergraduate electron-spin-resonance experiment," Am. J. Phys. 48, 732-736.

-miscellaneous papers on atoms & molecules

To top?

Anderson, R. and M. Jurisch (1975), "Lifetimes of the A^2-PI state of CO+ and the A^2-DELTA state of CH*," Am. J. Phys. 43, 535-537.

Donnally, B. L. (1965), "Apparatus notes: Easy to handle source of potassium, rubidium, and cesium," Am. J. Phys. 33, No. 3 - xxii.

Dunning, F. B. (1985), "Resource letter: AHRS-1: Atoms in high Rydberg states," Am. J. Phys. 53, 944-949.

Feinberg, R. (1983), "Measuring the lifetime of a metastable state," Am. J. Phys. 51, 573-574 .

Fontana, P. R. and R. P. Srivastava (1977), "Electrical analogs of atomic radiative decay processes," Am. J. Phys. 45, 288-294.

Hackman, C. and D. B. Sullivan (1995), "Resource Letter: TFM-1: time and frequency measurement," Am. J. Phys. 63 (4), 306-17.

Husman, M., L. Schwieters, M., and H. Rabitz (1991), "Molecular-dynamics simulator for optimal control of molecular motion," Am. J. Phys. 59, 1012-1017.

Lama, W. L., R. Jodoin, and L. Mandel (1972), "Superradiance in radiatively coupled tuning forks," Am. J. Phys. 40, 32-37.

Levin, E. (1984), "Magnetic dipole moment measurement," Am. J. Phys. 52, 248-250.

Logan, B. A. (1970), "A determination of electron binding energies," Am. J. Phys. 38, 1248-1249.

McKibben, J. L. (1977), "Triple pendulum as an analog to three coupled stationary states," Am. J. Phys. 45, 1022-1026.

Meiners, H. F. and Committe on Apparatus of the AAPT, Eds. (1965), "Apparatus notes: ionization potential of xenon," Am. J. Phys. 33, No. 5 - xvii - xviii.

Reed, R. A. (1990), "Simple lecture demonstration for the nonlinear behavior of absorption in a scattering medium," Am. J. Phys. 58, 697.

Rossing, T. D. (1973), "Experiments in molecular physics with an acoustic interferometer," Am. J. Phys. 41, 351-354.

Shaw, D. E., M. J. Hones, and F. J. Wunderlich (1973), "Quantitative, molecular light-scattering experiment," Am. J. Phys. 41, 1229-1232.

Spokas, J. J. (1979), "Charge induced by the displacement of an ion," Am. J. Phys. 47, 1278-1279.

Srygley, F. D. (1973), "A model to demonstrate the effects of heat on bond formation," Am. J. Phys. 41, 582-583.

Stedman, G. E. (1983), "Visualising higher continuous symmetries in the Jahn-Teller effect," Eur. J. Phys. 4.

Fendley, J. (1979), "Measurement of the critical potentials of helium," Phys. Educ. 14, 309-311.

Johansson, S. (1980), "An experimental study of atomic processes in helium," Phys. Educ. 15, 242-244.

-miscellaneous papers on spectroscopy & magnetic resonance

To top?

Arnett, K., R. Anderson, and R. Alexander (1981), "Modern spectroscopy with a spectrometer by the optogalvanic effect," Am. J. Phys. 49, 767-772.

Bartling, J. Q. (1966), "Autocorrelation spectroscopy," Am. J. Phys. 34, 974-978.

Blatt, J. H. and D. W. Thomson (1976), "Polaroid ED-10 instrument camera attachment for divided circle spectrometers," Am. J. Phys. 44, 308-309.

Bowman, D. W. and et al (1973), "A simply constructed, single-schlitz spectroscope," Am. J. Phys. 41, 932-933.

Bowman, R. L. (1973), "Comment on "Spectral analysis using a camera" [L. H. Greenberg and T. Balez, Am. J. Phys. 40, 319 (1972)]," Am. J. Phys. 41, 1297.

Brown, J. C. (1983), "Optical correlation functions and spectra," Am. J. Phys. 51, 1008-1011.

Crawford, F. S. (1971), "Variations on a famous white light experiment of Isaac Newton," Am. J. Phys. 39, 1538-1539.

Dusek, J., R. J. Kearney, and G. Baldini (1980), "Analysis of blackbody radiation with derivative spectroscopy," Am. J. Phys. 48, 232-236.

Holmes, J. B., R. M. Morgan, and R. King (1979), "Distance measurement with a spectrometer," Am. J. Phys. 47, 472.

Innes, A. K. (1966), "Spectroscopy and thermochemistry: electronic energy relationships between molecules and their fragments," Am. J. Phys. 34, 306-308.

Ratcliff, S. J., D. K. Noss, J. S. Dunham, E. B. Anthony, J. H. Cooley, and A. Alvarez (1992), "High-resolution solar spectroscopy in the undergraduate physics laboratory," Am. J. Phys. 60, 645-649.

Rubin, B. and R. M. Herman (1981), "Monochromators as light stretchers," Am. J. Phys. 49, 868-871.

Skinner, A. R. and D. W. Chandler (1980), "Spectroscopy with supersonic jets," Am. J. Phys. 48, 8-13.

Turner, T. J. (1966), "Study of the simple harmonic oscillator by means of F-center absorption," Am. J. Phys. 34, 301-305.

White, H. W. and R. Graves (1982), "Advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy," Am. J. Phys. 50, 38-41.

Fabry, M. and G. Hennion (1991), "An undergraduate experiment for plasma spectroscopy," Eur. J. Phys. 12, 47-49.

Winter, A. T., M. S. Foster, R. N. Godby, and L. Stavely-Smith (1979), "Stroboscopic colours under fluorescent light," Phys. Educ. 14, 430-431.

To top?