Se supone comúnmente que un atleta puede desplazarse desde el punto de salida (A) hasta la meta (B). Sin embargo, según Zenón, esto es imposible. Su argumento es el siguiente: antes de llegar a la meta el atleta deberá recorrer la mitad de la distancia y alcanzar el punto medio de A y B, esto es, I1. Alcanzado el punto I1, antes de llegar a B deberá recorrer la mitad de la distancia que le queda y alcanzar el punto medio de I1 y B, esto es, I2. Continuando el argumento indefinidamente, el corredor deberá, antes de llegar a B, recorrer infinitos trayectos en un tiempo finito, lo cual es imposible.
En este argumento Zenón asume que el espacio es continuo y, por tanto, infinitamente divisible. Sin embargo, no hace lo mismo con el tiempo, lo que da lugar a la paradoja. Veamos primero qué es lo que hace con el espacio:
Suposición: el espacio es infinitamente divisible
Aunque pueda resultar sorprendente en un principio, es posible sumar infinitas cantidades y que el resultado sea finito. Un ejemplo sencillo es el de las progresiones geométricas, que son aquellas sucesiones en las que cada término se obtiene multiplicando al anterior por una cantidad constante llamada razón. Si dicha razón es menor que uno es fácil demostrar que la suma de los infinitos términos de la progresión se obtiene mediante la fórmula S = a1/(1 - r), donde a1 es el primero de los términos.
Un caso especialmente intuitivo es el de la progresión 1/2, 1/4, 1/8, 1/16, 1/32... Parece claro que si primero cogemos la mitad de la unidad, y luego la mitad de lo que queda, y luego la mitad de lo que queda, y así "hasta el infinito", acabaremos cogiendo la unidad completa:
Efectivamente: aplicando la fórmula anterior para la suma, se tiene:
.
El caso planteado por Zenón es esencialmente el mismo: supongamos que la distancia a recorrer es L. Entonces los intervalos a recorrer por el atleta serán L/2, L/4, L/8..., cantidades que resultan ser los términos de una progresión geométrica de razón 1/2 cuya suma es:
Es decir, que no hay problema en subdividir el espacio infinitamente.
¿Y el tiempo?
Si la velocidad del atleta es v (que consideramos constante por comodidad), el tiempo que tardará en recorrer el primer intervalo será L/2v, y el segundo L/4v, y así sucesivamente. Zenón en este punto dice que el corredor nunca podrá llegar a la meta porque recorrer los infinitos intervalos le llevaría un tiempo infinito. Pero se equivoca: si sumamos todos los tiempos, tenemos:
que es una cantidad de tiempo finita.
Conclusión
A no ser que alguna razón nos lo impida, si aceptamos la continuidad del espacio debemos aceptar la del tiempo, lo cual nos autoriza a recorrer infinitos intervalos espaciales en un tiempo finito.
Conviene indicar que los cálculos anteriores no demuestran que el movimiento sea posible, sino que el argumento de Zenón no es correcto.
El mundo físico
Hasta ahora hemos hablado en términos puramente matemáticos. Pero, ¿y qué dice la física? Pues dice que aunque no conozcamos la microestructura detallada del espacio-tiempo sí que sabemos que no puede ser cortado ilimitadamente. Para observar un detalle necesitamos una longitud de onda menor que el detalle mismo. Para que la longitud de onda sea menor debe aumentarse la energía, pero esto puede hacerse tan solo hasta cierto límite, pues alcanzado este la concentración de energía llevaría a un agujero negro. La longitud a la que ocurre esto, la mínima posible, es la conocida como longitud de Plank. El tiempo de Plank es el que tarda la luz en cruzar esa distancia. Dado que nada viaja más rápido que la luz, este es el tiempo mínimo posible. Por debajo de esa distancia y ese tiempo nada se puede observar y la realidad deja de tener sentido.
De ser esto cierto (no olvidemos que estamos hablando de física y, por tanto, de teorías), nos encontraríamos en un espacio-tiempo discreto y la paradoja de Zenon se desvanecería automáticamente pues, como se ha visto, el argumento de Zenon parte de la suposición de un espacio infinitamente divisible.
Una variante
Antes de llegar al punto medio de A y B, esto es, I1, el corredor debería llegar al punto medio de A e I1, esto es, I2. Y antes de llegar a I2 debería de llegar al punto medio de A e I2, esto es, I3. Repitiendo el proceso indefinidamente sumimos al corredor en una extraña inmovilidad, pues antes de alcanzar cualquier punto de la trayectoria debe haber pasado por una cantidad infinita de ellos.
La paradoja lógica que voy a relatar se le planteó al filósofo griego Protágoras hace unos 2.400 años aproximadamente. Protágoras fue uno de los precursores del movimiento sofista. Según algunos de sus contemporáneos fue el primero que sostuvo que sobre una misma cuestión existen dos discursos mutuamente opuestos.
Durante años enseñó sus conocimientos a los hijos de las familias pudientes griegas, por los que cobró grandes sumas de dinero. Los cursos eran rápidos y eficaces, y entre las enseñanzas transmitidas gran parte la ocupaban tanto la retórica como la argumentación. Para que os hagáis una idea, las escuelas sofistas eran, en aquél entonces, lo que hoy pueden ser las universidades privadas. Las enseñanzas de los sofistas eran muy valiosas para aquellos que quisieran hacer carrera política o judicial.
El pleito de los honorarios se plantea entre el maestro Protágoras y su discípulo Evatlo al que acoge en su academia con la condición de que le pagara los honorarios del curso cuando ganase su primer pleito. Terminado el curso Evatlo no tuvo ningún cliente y Protágoras, que era sofista pero no estoico, demandó a su discípulo.
Los argumentos expuestos fueron los siguientes:
Evatlo: Tanto si gano como si pierdo, en ningún caso tendré obligación de pagar a Protagoras. Si yo gano el pleito no tendré que pagar ya que el Juez habrá desestimado la demanda. Si lo pierdo, entonces, no habré ganado mi primer pleito y por lo tanto no se habrá cumplido la condición que hacía exigible la obligación de pago de los honorarios.
Protágoras: Tanto si gano como si pierdo este pleito, Evatlo siempre tendrá obligación de pagarme. Si yo gano la demanda, por definición tendrá que pagarme pues esta es la cuestión que se ventila en este pleito. Y si la pierdo, también tendrá que pagarme porque significará que ha ganado su primer pleito; es decir se habrá cumplido la condición de nuestro acuerdo.
¿Quién creéis que tenía razón?
Juan Carlos manda esta paradoja (24-8-2003) y dice: "La paradoja la recoge Raymond Smullyan. He añadido algunos datos que aparecen en el libro Sofistas, Testimonios y Fragmentos de la Editorial Gredos".
El origen de la paradoja reside en el hecho de que tanto Protágoras como su alumno primero aceptan la autoridad del tribunal pero después, si el veredicto no les favorece, deciden no someterse. Dicho de otra manera: más que una paradoja este es un caso de mala fe por parte de maestro y alumno. La finalidad del pleito es resolver el conflicto entre las partes. Pero deja de tener sentido si dichas partes condicionan su acatamiento al resultado.
Conclusión: Si no van a jucicio, pues no hay paradoja. Si van a jucicio, tendrán que acatar lo que decida el tribunal y listo.
Érase una vez un reino donde había muchas ciudades y por tanto muchos alcaldes. Algunos alcaldes vivían en la ciudad que gobernaban y otros no. El rey, a fin de tener controlados a los alcaldes, decidió que eso se terminaría, y que los alcaldes no podrían vivir donde les pareciera. Lo que hizo fue construir una ciudad que llamó ZAD (Zona de Alcaldes Desplazados) y decretó que en ella vivirían únicamente los alcaldes que no viveran en la ciudad que governaban. Pronto surgió un problema. ¿Dónde debería el rey mandar a vivir al alcalde de la nueva ciudad?
Los conjuntos parecen ser de dos tipos: los que se contienen a sí mismos como miembros y los que no. Un ejemplo de los primeros sería el conjunto de las cosas pensables, pues a su vez es una cosa pensable. Un ejemplo de los segundos sería el conjunto de los matemáticos, pues el conjunto en sí no es un matemático y, por tanto, no pertenece al conjunto como miembro.
Consideremos ahora el conjunto todos los conjuntos que no se contiene a sí mismos como miembro. Llamémosle T. ¿está T contenido en sí mismo como miembro? Si lo está, por definición no se contiene a sí mismo, luego no lo está. Pero si no lo está, por definición, debe estar.
Propuesta por Bertrand Russell, dice:
El único barbero de la ciudad dice que afeitará a todos aquellos que no se afeiten a sí mismos.
Pregunta: ¿quién afeitará al barbero? Si no se afeita a sí mismo será una de las personas de la ciudad que no se afeitan a sí mismas, con lo cual debería de afeitarse, siendo por tanto una de las personas que se afeitan a sí mismas, no debiendo por tanto afeitarse.
Gottlob Frege, matemático y lógico alemán, se había propuesto llevar a cabo el llamado programa logicista, consistente en deducir toda la matemática de la lógica y darle así la más sólida de las bases. Dicho programa había de realizarse en dos pasos, en el primero de los cuales se definirían los conceptos matemáticos en función de la lógica para después, en el segundo, demostrar los teoremas matemáticos usando únicamente la lógica.
Tras veinte años de trabajo, en 1902 Frege había terminado el segundo volumen de su obra Las leyes fundamentales de la Aritmética, con la que creía haber dado por fin, mediante la teoría de conjuntos, solución a la fundamentación lógica de la matemática. De hecho el libro estaba terminándose prácticamente de imprimir cuando Frege recibió una carta de Bertrand Russell en la que el inglés le explicaba que había encontrado una paradoja en la teoría de conjuntos. A Frege solo le dio tiempo para insertar una nota al final de su libro, sin duda una de las más patéticas confesiones de la historia de la matemática:
"Difícilmente puede haber algo más indeseable para un científico que ver el derrumbe de sus cimientos justamente cuando la obra está acabada. La carta del Sr. Bertrand Russell me ha puesto en esta situación...”.
Por aquellos años, Russell y Whitehead, defensores como Frege del programa logicista, estaban enfrascados en la composición de su Principia Mathematica. Estaba el primero de ellos estudiando las paradojas que había halladoCantor respecto del cardinal de la clase universal, cuando descubrió una mucho más sencilla, que es la que hoy lleva su nombre. Así lo contó el propio Russell:
"Me parece que una clase a veces es, y a veces no es, un miembro de sí misma. La clase de las cucharitas de té, por ejemplo, no es otra cucharita de té, pero la clase de cosas que no son cucharitas de té es una de las cosas que no son cucharitas... [esto] me condujo a considerar las clases que no son miembros de sí mismas; y éstas, parecía, debían formar una clase. Me pregunté si esta clase es o no un miembro de sí misma. Si es un miembro de sí misma, debería poseer las propiedades que definen a dicha clase, que consisten en no ser miembros de sí mismas. Si no es un miembro de sí misma, no debe poseer la propiedad definitoria de la clase, y por tanto debe ser un miembro de sí misma. Así cada alternativa lleva a su opuesta y existe una contradicción."
Resumiendo: había descubierto que considerar el conjunto de los conjuntos que no son miembros de sí mismos lleva a una contradicción. Otra forma de exponer la misma idea es mediante la paradoja del barbero, también de Russell: en un pueblo había un barbero que solo afeitaba a aquellos que nunca se afeitaban a sí mismos. ¿Se afeitaba el barbero a sí mismo?
Como primera consecuencia, la paradoja de Russell se cargó el trabajo de Frege, pues este utilizaba el principio de comprehensión, el cual autoriza a pasar del concepto a la clase (es decir, que todo predicado razonable describe un conjunto), de modo que si la teoría de Frege fuese correcta el "conjunto de los conjuntos que no son miembros de sí mismos" debería de tener sentido.
Lo que le dijo Whitehead a Russell cuando este le contó su descubrimiento es bastante gráfico: "nunca habrá otra vez una alegre y confiada mañana". En cualquier caso, Russell creyó al principio que la paradoja no era más que una curiosidad, hasta que sus infructuosos intentos por resolverla durante más de un año le hicieron ver que se encontraba ante una cuestión fundamental.
En 1902 Russell le manda la famosa carta al pobre Frege y se pone manos a la obra para encontrar una solución. Parecía claro que las dificultades aparecían con los conjuntos que son miembros de sí mismos. Tras enormes sufrimientos intelectuales y varios años de trabajo, Russell propone su teoría de tipos que, simplificando, consistente en organizar los conjuntos en niveles. Por ejemplo, los gatos serían objetos de primer nivel, los conjuntos de gatos de segundo (el conjunto de los siameses, el conjunto de los gatos negros), los conjuntos de conjuntos de gatos de tercero (el conjunto de las razas de gatos), y así sucesivamente. En esta jerarquía solo se puede decir que un objeto de nivel n es miembro de otro objeto solo si este es de nivel n+1. Un conjunto de gatos, por ejemplo los siameses, puede ser miembro de un conjunto de conjuntos de gatos, por ejemplo el conjunto de las razas de gatos, pero no puede ser miembro de otro conjunto de gatos, pues estos solo contienen gatos.
Russell resolvió así la paradoja que él mismo había descubierto, pero los problemas para el programa logicista no había hecho más que empezar. De hecho, pronto se constataría que lo conseguido por Russell y Whitehead no era reducir la matemática a la lógica, sino a la lógica más la teoría de conjuntos.
En cualquier caso, el encargado de darle el golpe de gracia al sueño de Frege sería el lógico Kurt Gödel, quien demostró con su teorema de incompletitud que los sistemas formales del tipo de los descritos en los Principia Mathematica o son incompletos (no pueden demostrar todos los teorema ciertos) o son inconsistentes (contienen contradicciones). Vamos, que la matemática o no dice toda la verdad, o miente. Pero bueno, esto ya es otra historia.
fuente: www.epsilones.com