พูดให้ง่ายๆคือ Big Data คือปริมาณข้อมูลที่มาก มีความซับซ้อน โดยเฉพาะที่มาจากแหล่งข้อมูลใหม่ๆ ด้วยปริมาณที่มากมายมหาศาลทำให้ไม่สามารถประเมินและวิเคราะห์ด้วยวิธีการ ซอฟต์แวร์ ฮาร์ดแวร์แบบเดิมๆ แต่ข้อมูลมากมายมหาศาลเหล่านี้สามารถนำมาใช้ประโยชน์ได้ในทางธุรกิจที่ในอดีตไม่สามารถใช้ได้
โดยทั่วไปลักษณะพื้นฐานของ Big Data จะมีอยู่ 3 ประการคือ ปริมาณ (Volume), ความหลากหลาย (Variety) และ ความเร็ว (Velocity) แต่วันนี้เราจะมาพูดถึงคุณลักษณะที่เพิ่มขึ้นมาอีก 3 ประการ ที่ทำให้ข้อมูลขนาดใหญ่ (Big Data) นี้มีคุณภาพสูงขึ้น และเหมาะที่จะนำมาใช้ในการวิเคราะห์เพื่อให้ได้มาซึ่งความเข้าใจเชิงลึก(insight)
Big data ที่มีคุณภาพสูงควรมีลักษณะพื้นฐานอยู่ 6 ประการหลักๆ (6 Vs) ดังนี้
1. ปริมาณ (Volume) หมายถึง ปริมาณของข้อมูลควรมีจำนวนมากพอ ทำให้เมื่อนำมาวิเคราะห์แล้วจะได้ insights ที่ตรงกับความเป็นจริง เช่น การที่เรามีข้อมูลอายุ เพศ ของลูกค้าส่วนใหญ่ ทำให้เราสามารถหา demographic profile ทั่วไปของลูกค้าที่ถูกต้องได้ ถ้าเรามีข้อมูลลูกค้าแค่ส่วนน้อย ค่าที่ประมาณออกมาอาจจะไม่ตรงกับความเป็นจริง
2. ความหลากหลาย (Variety) หมายถึง รูปแบบของข้อมูลควรหลากหลายแตกต่างกันออกไป ทั้งแบบโครงสร้าง, กึ่งโครงสร้าง, ไม่มีโครงสร้าง ทำให้เราสามารถนำมาวิเคราะห์ประกอบกัน จนได้ได้ insights ครบถ้วน
3. ความเร็ว (Velocity) หมายถึง คุณลักษณะข้อมูลที่ถูกสร้างขึ้นอย่างรวดเร็วต่อเนื่องและทันเหตุการณ์ ทำให้เราสามารถวิเคราะห์ข้อมูลแบบ real-time นำผลลัพธ์มาทำการตัดสินใจและตอบสนองได้อย่างทันท่วงที เช่น ข้อมูล GPS ที่ใช้ติดตามตำแหน่งของรถ อาจจะนำมาวิเคราะห์โอกาสที่ทำให้เกิดอุบัติเหตุ และออกแบบระบบป้องกันอุบัติเหตุได้
4. ความถูกต้อง (Veracity) หมายถึง มีความน่าเชื่อถือของแหล่งที่มาข้อมูลและความถูกต้องของชุดข้อมูล มีกระบวนการในการตรวจสอบและยืนยันความถูกต้องของข้อมูล ซึ่งมีความเกี่ยวเนื่องโดยตรงกับผลลัพท์การวิเคราะห์ข้อมูล
5. คุณค่า (Value) หมายถึง ข้อมูลมีประโยชน์และมีความสัมพันธ์ในเชิงธุรกิจ ซึ่งต้องเข้าใจก่อนว่าไม่ใช่ทุกข้อมูลจะมีประโยชน์ในการเก็บและวิเคราะห์ ข้อมูลที่มีประโยชน์จะต้องเกี่ยวข้องกับวัตถุประสงค์ทางธุรกิจ เช่นถ้าต้องการเพิ่มขีดความสามารถในการแข่งขันในตลาดของผลิตภัณฑ์ที่ขาย ข้อมูลที่มีประโยชน์ที่สุดน่าจะเป็นข้อมูลผลิตภัณฑ์ของคู่แข่ง
6. ความแปรผันได้ (Variability) หมายถึง ข้อมูลสามารถในการเปลี่ยนแปลงรูปแบบไปตามการใช้งาน หรือสามารถคิดวิเคราะห์ได้จากหลายแง่มุม และรูปแบบในการจัดเก็บข้อมูลก็อาจจะต่างกันออกไปในแต่ละแหล่งของข้อมูล
ถึงแม้ว่าแนวคิดเรื่องข้อมูลขนาดใหญ่หรือ Big Data จะเป็นของใหม่และมีการเริ่มทำกันในไม่กี่ปีมานี้เอง แต่ต้นกำเนิดของชุดข้อมูลขนาดใหญ่ได้มีการริเริ่มสร้างมาตั้งแต่ยุค 60 และในยุค 70 โลกของข้อมูลก็ได้เริ่มต้น และได้พัฒนาศูนย์ข้อมูลแห่งแรกขึ้น และทำการพัฒนาฐานข้อมูลเชิงสัมพันธ์ขึ้นมา
ประมาณปี 2005 เริ่มได้มีการตะหนักถึงข้อมูลปริมาณมากที่ผู้คนได้สร้างข้นมาผ่านสื่ออนไลน์ เช่น เฟสบุ๊ค ยูทูป และสื่ออนไลน์แบบอื่นๆ Hadoop เป็นโอเพ่นซอร์สเฟรมเวิร์คที่ถูกสร้างขึ้นมาในช่วงเวลาเดียวกันให้เป็นที่เก็บและวิเคราะห์ข้อมูลขนาดใหญ่ และในช่วงเวลาเดียวกัน NoSQL ได้ก็เริ่มขึ้นและได้รับความนิยมมากขึ้น
การพัฒนาโอเพนซอร์สเฟรมเวิร์ค เช่น Hadoop (และเมื่อเร็ว ๆ นี้ก็มี Spark) มีความสำคัญต่อการเติบโตของข้อมูลขนาดใหญ่ เนื่องจากทำให้ข้อมูลขนาดใหญ่ทำงานได้ง่าย และประหยัดกว่า ในช่วงหลายปีที่ผ่านมาปริมาณข้อมูลขนาดใหญ่ได้เพิ่มขึ้นอย่างรวดเร็ว ผู้คนยังคงสร้างข้อมูลจำนวนมาก ซึ่งไม่ใช่แค่มนุษย์ที่ทำมันขึ้นมา
การพัฒนาการของ IOT (Internet of Thing) ซึ่งเป็นเครื่องมืออุปกรณ์ที่เชื่อมต่อกับอินเตอร์เนตก็ทำการเก็บและรวบรวมข้อมูลซึ่งอาจเป็นเรื่องที่เกี่ยวกับพฤติกรรมการใช้งานของลูกค้า ประสิทธิภาพของสินค้า หรือการเรียนรู้ของเครื่องจักรพวกนี้ล้วนทำให้มีข้อมูลขนาดใหญ่
แม้ว่ายุคของข้อมูลขนาดใหญ่ Big Data มาถึงและได้เริ่มต้นแล้ว แต่มันก็ยังเป็นเพียงแต่ช่วงแรกๆ และระบบระบบคลาวด์คอมพิวติ้งก็ได้ขยายความเป็นไปได้มากขึ้น คลาวด์มีความสามารถในการในการใช้งานได้อย่างยืดหยุ่นได้
ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้เราสามารถจัดการงานทางธุรกิจได้อย่างมีประสิทธิภาพ ได้ตั้งแต่การเก็บข้อมูลของลูกค้าเพื่อสร้างประสบการณ์ที่ดีให้กับลูกค้า เป็นต้น ต่อนี้ไปเป็นตัวอย่างเพียงส่วนหนึ่งของการใช้ข้อมูล Big Data
การพัฒนาผลิตภัณฑ์
บริษัท Netflix และ บริษัท Procter & Gamble ได้ใช้ข้อมูล Big Data ช่วยในการคาดการณ์ความต้องการของลูกค้า พวกเขาสร้างโมเดลเชิงคาดการณ์สำหรับผลิตภัณฑ์และบริการใหม่ ๆ โดยการจำแนกคุณลักษณะที่สำคัญของผลิตภัณฑ์หรือบริการในอดีตและปัจจุบันและสร้างแบบจำลองความสัมพันธ์ระหว่างคุณลักษณะเหล่านี้กับความสำเร็จในเชิงพาณิชย์ของข้อเสนอ นอกากนี้ยังมีบริษัท P&G ยังใช้ข้อมูลของสื่อสังคมออนไลน์ในการวิเคราะห์ ในการทดสอบตลาดและเปิดตัวสินค้าในช่วงต้น เพื่อวางแผนการผลิตและเปิดตัวสินค้าใหม่
การคาดการณ์เพื่อการบำรุงรักษาเครื่องจักร
ปัจจัยที่ใช้ทำนายการชำรุดของเครื่องจักรนี้ มาจากข้อมูลทั้งที่เป็นแบบมีโครงสร้างเช่น วันเดือนปี ที่ผลิต รุ่น และข้อมูลที่ไม่มีโครงสร้าง เช่นข้อมูลจากเว็นเซอร์ต่างๆ เช่นอุณภูมิของเครื่องยนต์ การทำงานผิดปกติของเครืองจักร ซึ่งข้อมูลเหล่านี้จะต้องได้รับการวิเคราะห์ก่อนที่จะเกิดปัญหา การวิเคราะห์ข้อมูลเหล่านี้ เพื่อกำหนดตารางซ่อมบำรุง เพื่อประหยัดงบการซ่อมบำรุง และรวมไปถึงการสต๊อกอะไหล่ต่างๆ เพืท่อให้การซ่อมบำรุงได้อย่างมีประสิทธิภาพ ทันเวลา และประหยัดงบประมาณ
สร้างประสบการณ์ที่ดีให้กับลูกค้า
ในสภาวะการแข่งขันทางการค้าในปัจจุบัน การเสนอประสบการณ์และข้อเสนอที่ดีที่สุดและตรงใจแก่ลูกค้าที่สุดก็จะเป็นผู้ได้เปรียบในการแข่งขัน ข้อมูลขนาดใหญ่หรือ Big Data ช่วยให้ธุรกิจรวบรวมข้อมูลจากสื่อสังคมออนไลน์ ผู้เข้าชมเว๊ปไซท์ ผู้เข้าใช้แอพพลิเคชั่น ข้อมูลการตอบโต้ทางโทรศัพท์ ข้อมูลการสนทนาผ่านสื่อต่างๆ เพื่อช่วยให้ปรับปรุงการสื่อสารกับลูกค้า และเพิ่มมูลค่าให้ได้มากที่สุดด้วยการส่งข้อเสนอสุดพิเศษให้ตรงใจกับลูกค้า และยังช่วยแก้ปัญหาที่เกิดกับลูกค้า เป็นการแก้ปัญหาเชิงรุกได้อย่างมีประสิทธิภาพ
การตรวจสอบการโกงและการปฏิบัติตามกฎระเบียบ
การโกงในระบบเครือข่ายอินเตอร์เนตไม่ได้มีเฉพาะจากแฮกเกอร์เท่านั้น ซึ่งเราจะต้องเผชิญกับผู้เช่ยวชาญในหลายๆรูปแบบ ในระบบการรักษาความปลอดภัยสมัยใหม่นี้ได้มีการพัฒนาอย่างไม่หยุดนิ่ง การใช้ข้อมูลขนาดใหญ่สามารถทำให้เราระบุรูปแบบของข้อมูลที่เข้าในรูปที่มิชอบ และไม่ถูกต้องตามข้อกำหนดของเราได้
การเรียนรู้ของเครื่องจักร Learning Machine
การเรียนรู้ของเครื่องจักร หรือ Learning Machine กำลังเป็นที่นิยมอยู่ในขณะนี้ ข้อมูลโดยเฉพาะอย่างยิ่งข้อมูลขนาดใหญ่เป็นเหตุผลที่เราสามารถสอนเครื่องจักรได้ การมีข้อมูลขนาดใหญ่ทำให้ง่ายในการเตรียมข้อมูลในการสอนเครื่องจักรให้สามารถเรียนรู้ได้
ประสิทธิภาพในการปฏิบัติงาน
โดยปกติประสิทธิภาพในการปฏิบัติงานเรามักไม่ทราบว่าการดำเนินงานนั้นมีประสิทธิภาพเพียงใด แต่ในพื้นที่ที่มีข้อมูลขนาดใหญ่ ด้วยข้อมูลมูลขนาดใหญ่นี้ทำให้เราสามารถวิเคราะห์ และเข้าถึง การผลิตหรือการปฏิบัติงานได้ การตอบรับของลูกค้า รวมถึงปัจจัยอื่นๆที่จะทำให้ธุรกิจหยุดชะงักหรือขัดข้องได้ และสามารถคาดการณ์ความต้องการล่วงหน้าด้วยการวิเคราะห์ข้อมูลขนาดใหญ่ ข้อมูลขนาดใหญ่หรือ Big Data นี้ยังสามารถใช้เพื่อปรับปรุงการตัดสินใจให้สอดคล้องกับความต้องการของตลาดในปัจจุบันได้อีกด้วย
การขับเคลื่อนในการสร้างสรรค์สิ่งใหม่ๆ
ข้อมูลขนาดใหญ่สามารถช่วยคุณในการสร้างสรรค์สิ่งใหม่ ๆ ได้โดยการศึกษาความสัมพันธ์ระหว่าง บุคคล สถาบัน หน่วยงาน องค์กร และกระบวนการ และดำเนินการกำหนดวิธีการใหม่ในการใช้ข้อมูลเชิงลึกเหล่านั้น ใช้ข้อมูลเชิงลึกเพื่อปรับปรุงการตัดสินใจเกี่ยวกับการพิจารณาเรื่องการเงิน วางแผนและพิจารณาแผนงาน ตรวจสอบแนวโน้มและสิ่งที่ลูกค้าต้องการ นำเสนอผลิตภัณฑ์และบริการใหม่ ๆ ใช้การกำหนดราคาแบบไดนามิก ที่มีความเป็นไปได้ไม่มีที่สิ้นสุด
ข้อมูลขนาดใหญ่ให้ข้อมูลเชิงลึกใหม่ ๆ เพื่อเปิดโอกาสและรูปแบบธุรกิจใหม่ ๆ การเริ่มต้นใช้งานประกอบด้วย 3 ขั้นตอนสำคัญดังนี้
การรวบรวมข้อมูลของ Big Data เป็นการรวบรวมข้อมูลของจากหลากหลายทั้งที่มาและการใช้งานที่แตกต่างกันอย่างมากมาย ซึ่งกลไกและเทคโนโลยีแบบดั้งเดิม ETL (extract, transform, and load) ไม่สามารถทำได้ ซึ่ง Big Data หรือ ข้อมูลขนาดใหญ่ต้องการเทคนิค วิธีการ และเทคโนโลยีใหม่ในการรวบรวมข้อมูลขนาด เทราไบต์ และอาจจะเป็นระดับเพธาไบต์เลยก็มี
ในการรวบรวมข้อมูลนั้นต้องมีการประมวลผล จัดรูปแบบ ให้เหมาะสำหรับการใช้ในการวิเคราะห์หรือใช้งานสำหรับธุรกิจหรือวัตถุประสงค์นั้นๆ
ข้อมูลขนาดใหญ่ หรือ Big Data นั้นมีความต้องการสถานที่จัดเก็บขนาดใหญ่ การจัดเก็บข้อมูลมูลขนาดใหญ่จะเป็นชนิดใดก็ได้ไม่ว่าจะเป็นแบบ on premises หรือ แบบ cloud ขึ้นกับความต้องการหรือความสะดวกในการใช้ ซึ่งเราสามารถใช้และประเมินผลได้เช่นเดียวกัน บางครั้งก็มีความจำเป็นที่ต้องจัดเก็บไว้ใกล้กับแหล่งข้อมูล หรือข้อมูลบางอันต้องการความยืดหยุ่นสูงและไม่ต้องการบริหารจัดการก็ใช้เป็นแบบ Cloud ซึ่งกำลังเป็นที่นิยมกันเป็นอย่างมาก
การลงทุนสร้างข้อมูลขนาดใหญ่ หรือ Big data จะมีประโยชน์หรือคุ้มค่าก็ต่อเมื่อคุณใช้และวิเคราะห์ข้อมูล การวิเคราะห์ข้อมูลทำให้เกิดความกระจ่างและชัดเจนในชุดข้อมูลที่คุณมีอยู่ การสำรวจข้อมูลยังทำให้เราค้นพบสิ่งใหม่ แชร์สิ่งที่ค้นพบใหม่ๆต่อคนอื่น สร้างรูปแบบจำลองข้อมูล ด้วยการเรียนรู้ของเครื่องจักรและปัญญาประดิษฐ์ AI และนำข้อมูลเหล่านั้นไปใช้งาน
ให้นักเรียน download เอกสาร ใบงาน เรื่อง Big DATA แล้วทำส่งตามเวลาที่นัดหมาย (พิมพ์ส่งเป็นไฟล์ WORD)