April 22nd - April 23rd 2021
website - https://event.geopython.net/#/room/#announce:event.geopython.net
schedule - https://2021.geopython.net/schedule.html
Room 1 videos - https://vimeo.com/user/137335150/folder/4121205
Room 2 videos - https://vimeo.com/user/137335150/folder/4250501
https://geemap.org/workshops/GeoPython_2021/
https://github.com/krishnaglodha/geopython2021-Geospatial-analysis-101
https://jrc-cbm.readthedocs.io/en/latest/
Confirm or reject farmer declares practice (markers)
Sentinal-2 is optical, Sentinal-1 is microwave
Used rasterstats previously (mean, std, min, max, p25, p50, p75) for the bands of the images. Expensive as does raster -> vector. Now speed up as a look up using numba.
https://creodias.eu/price-list has pricing of services
NetworkX, numpy solution
Q. asked more high resolution terrain data: https://geoservice.dlr.de/web/dataguide/tdm90/
Carto offer geospatial data https://carto.com/spatial-data-catalog/browser/
https://res.cloudinary.com/here/image/upload/v1619085466/maps/HereQuadWorldLvl5_mzsg7x.png
https://res.cloudinary.com/here/image/upload/v1619085466/maps/MercatorQuadWorldLvl5_wjwbds.png
to be released
comparisons to https://h3geo.org/
https://github.com/allixender/30MapChallenge2020
https://allixender.github.io/30MapChallenge2020/geopython2021/index.html
https://allixender.github.io/30MapChallenge2020/
idea from https://tjukanov.org/
geospatial data catalog - https://data.world/
https://hackmd.io/9QHsCvq9SeyhUlrFW0fspA - conference chat on open geospatial datasets
https://github.com/CartoDB/cartoframes
https://carto.com/blog/predicting-traffic-accident-hotspots-with-spatial-data-science/
https://public.carto.com/kuviz/3672c7a5-2e83-45a0-9727-ebab9596ecc5
Data: Accidents; Traffic signs. OSM: street inspections, building footprints; AEMET - daily weather
Premium data: TomTom (road network, traffic density). POIs (points of interset) from Pitney Bowes, 13 categories
Human mobility: Vodafone. 250 x 250 m grid. Working population: Unica360
https://carto.com/spatial-data-catalog/
Moran I for classification of areas hot vs cold.
used https://pysal.org/libpysal/ for weights https://pysal.org/libpysal/api.html https://pysal.org/libpysal/generated/libpysal.weights.lag_spatial.html#libpysal-weights-lag-spatial -
https://pysal.org/libpysal/api.html#sphere
Feature engineering: spatial lags (distance from city center; how close intersections are)
indices: types of roads
https://pysal.org/tobler/api.html for some interpolation
https://mmaelicke.github.io/scikit-gstat/index.html for ?
https://github.com/GeoStat-Framework/PyKrige used for regression kriging (krigging on the residuals of RF)
https://github.com/Artash-N/Monitor-My-Lockdown-Using-Seismic-Vibrations
http://platform.saferplaces.co/
https://earthengine.google.com/timelapse/ - for motivation of sprawling cities
Flood hazard model. pluvial - extreme rainfall event. safer_rain - hierarchical filling and spilling
Coastal extreme sea levels. safer_coast
Riverine flood. fluvial.
Damage assessment bayesian network model
Mitigation measures
https://samapriya.github.io/awesome-gee-community-datasets/projects/global_power/
https://github.com/developmentseed/ml-enabler
Image classification of tiles (1 = school. 0 = no school).
TT-SNE shows mix of images.
Use https://www.tensorflow.org/api_docs/python/tf/data/TFRecordDataset for effective TF training. Use Kubeflow.
https://vimeo.com/geopython/review/539850665/a5a1e8d8d7?sort=lastUserActionEventDate&direction=desc
https://www.seges.dk/software/plante/cropmanager
Used gradient boosting from sklearn
Interpolate to daily data and resample to 14 day data
https://vimeo.com/geopython/review/539470731/ef072137e0?sort=lastUserActionEventDate&direction=desc
https://vimeo.com/geopython/review/539470769/566a70124c?sort=lastUserActionEventDate&direction=desc
https://github.com/mrcagney/gtfs_kit
https://vimeo.com/geopython/review/539850335/470f80d8bc?sort=lastUserActionEventDate&direction=desc
https://github.com/TileDB-Inc/TileDB-Py
https://github.com/TileDB-Inc/TileDB-Examples
https://www.capellaspace.com/community/ - SAR data
https://vimeo.com/geopython/review/539073526/bfb74ae414?sort=lastUserActionEventDate&direction=desc
https://vimeo.com/geopython/review/539470798/d7a8664c57?sort=lastUserActionEventDate&direction=desc
https://github.com/DonAurelio/geopython-2021
https://github.com/DonAurelio/geopython-2021/blob/main/Presentation.pdf
https://datacube-core.readthedocs.io/en/latest/index.html
https://vimeo.com/geopython/review/539470855/1d71f86f58?sort=lastUserActionEventDate&direction=desc
https://github.com/davemlz/eemont
https://eemont.readthedocs.io/en/0.1.9/
Nice methods e.g. ee.ImageCollection().maskClouds().filterBounds().scale().index()
https://github.com/davemlz/awesome-ee-spectral-indices
https://earthengine-stac.storage.googleapis.com/catalog/catalog.json
https://vimeo.com/geopython/review/540097666/ff29681003?sort=lastUserActionEventDate&direction=desc
ResNet18 - petrained on image net.
Cross-entropy loss
ADAM
LR = 0.001
100 epochs
K80 GPU
Gradient class activation map
Extremely Randomized Trees (ERT)
A QT application, a OGC web map server, a collaboration server to plan atmospheric research flights
https://github.com/Open-MSS/MSS
https://gmd.copernicus.org/articles/5/55/2012/gmd-5-55-2012.pdf
https://brmather.github.io/pycurious/
https://github.com/greatdevaks/geopython-qiskit
https://docs.google.com/presentation/d/1gqobnB-nDUmych2isMhEjq1caZEpIub5YX9Z8krPXdQ/edit#slide=id.p
https://github.com/phanein/deepwalk
https://github.com/opendatacube?type=source
https://drive.google.com/file/d/1dD62ygkgrW4NrYou_I8o4X90YQiQl2Qa/view?usp=sharing
https://gitlab.com/deltares/parterra/parterra-python
OSM - https://www.youtube.com/watch?v=7sC83j6vzjo&t=27s
FaIR: Finite Amplitude Impulse Response simple climate model
https://github.com/OMS-NetZero/FAIR
https://github.com/hydrocomputing/igwp/tree/master/
https://www.nature.com/articles/s41612-019-0086-4
https://gitlab.ouce.ox.ac.uk/OMP_climate_pollutants/co2-warming-equivalence/
https://github.com/mie-lab/trackintel other packages in this space https://github.com/anitagraser/movingpandas https://github.com/scikit-mobility/scikit-mobility
this focusses on human mobility
https://blog.mapbox.com/9-years-of-openstreetmap-gps-tracks-available-for-mapping-47f6074c0688
https://www.microsoft.com/en-us/download/details.aspx?id=52367
https://github.com/qgis/QGIS-Enhancement-Proposals/issues/179
https://github.com/szymon-datalions/pyinterpolate
https://pyinterpolate.readthedocs.io/en/latest/tutorials.html
https://drive.google.com/file/d/1xdUbVbzrVcaKXu1CMIk4I5whFk3gD8s1/view
https://github.com/jsingh811/pyAudioProcessing
https://docs.djangoproject.com/en/3.2/ref/contrib/gis/#module-django.contrib.gis
use PostgreSQL db with PostGIS
https://spatialthoughts.com/2020/02/22/snap-to-roads-qgis-and-osrm/
https://travel-time-prediction-app.herokuapp.com/
https://www.paulox.net/2021/04/23/geopython-2021/
https://vimeo.com/geopython/review/539472075/d68aff3d10?sort=lastUserActionEventDate&direction=desc
https://anitagraser.github.io/movingpandas/
https://github.com/anitagraser/EDA-protocol-movement-data
https://fosdem.org/2021/schedule/event/geopandasholoviews/
https://www.youtube.com/watch?v=dRE9Zl7jpUA
https://github.com/anitagraser/movingpandas-examples