Química Teórica (QFM202) es uno de los cursos centrales en la formación del Magister o el Doctor en Química Teórica. Está destinado a estudiar en profundidad la teoría subyacente en los métodos corrientes de cálculo químico cuántico (semiempíricos, ab initio y de funcionales de la densidad) enfatizando el aspecto formal y matemático de toda la teoría. Si bien se describen en el curso los métodos de cálculo, se enfatiza en su aspecto matemático más que en sus aplicaciones prácticas a la Química (dado que esto es el contenido de Química Computacional, QFM203)
Curso semestral, a partir de 2021 se dictará tentativamente en el semestre impar (comienzo 2021 en marzo).
Prof. Oscar N. Ventura
Desarrollar a fondo la formulación teórica de la aplicación de la mecánica cuántica a la Química
Proporcionar las herramientas matemáticas y fisicas fundamentales para la descripción de la estructura nuclear y electrónica de sistemas aislados en fase gaseosa
Proporcionar las herramientas matemáticas y físicas necesarias para la descripción de la estructura nuclear y electrónica de sistemas en interacción
Dar una introducción a los fenómenos dinámicos
Es conveniente que el estudiante haya realizado el curso de Mecánica Cuántica (QFM201). El mínimo absoluto requerido es tener aprobadas Química General I y II, Física 101, Matemática 01 y FQMB o Modelado Molecular.
El curso está estructurado en dos hemisemestres de 7 semanas para el teórico y dos hemisemestres de 5 y 7 semanas para el práctico. Se dictan 4 horas por semana de teórico y 2 horas por semana de práctico de ejercicios. El curso tiene una asignación de 11 créditos. Sólo se dictará en forma presencial en caso que el se exceda el número de 10 estudiantes insriptos. En caso contrario, se desarrollará el curso a distancia, vía teleconferencia, tutorías y clases de consultas.
Repaso de los Conceptos Fundamentales de Mecánica Cuántica
Postulados de la Mecánica Cuántica. Postulado 1: Estado Cuántico. Postulado 2: Evolución temporal de un estado cuántico. Postulado 3: Propiedades Observables y Operadores. Postulado 4: Medida de una propiedad. Postulado 5: Valor promedio de una propiedad física. Consecuencias de los postulados. Propiedades de los estados estacionarios. Compatibilidad de las magnitudes físicas. Teorema Variacional.
Overview de los conceptos teóricos
Introducción. La ecuación de Schrödinger. El Hamiltoniano molecular. La aproximación Born-Oppenheimer. Superficies de energía potencial. Mecánica molecular. Método Hartree-Fock. Orbitales moleculares. Espín electrónico. Conjuntos de funciones de base. El principio variacional. Las ecuaciones Roothaan-Hall. Capa cerrada y capa abierta. Métodos post-Hartree-Fock. Interacción de Configuraciones. Métodos perturbacionales. Coupled Clusters. Métodos multiconfiguracionales. Métodos semiempíricos. Métodos de funcionales de la densidad. Propiedades moleculares.
El método Hartree-Fock
La Ecuación de Schrödinger Electrónica. Métodos Hartree-Fock. Generalidades. Los operadores Coulombiano, de Intercambio y de Fock. Ecuaciones de Hartree-Fock. Interpretación de las soluciones. El espín electrónico. Generalidades. Operadores de espín. Determinantes restringidos y no restringidos. El método de campo autoconsistente. Generalidades. El caso de capa cerrada: RHF y las ecuaciones de Roothaan. El caso de capa abierta: UHF y las ecuaciones de Pople-Nesbet.
Métodos semiempíricos
Métodos de Hückel (HMO, EHT). Métodos ZDO (CNDO, INDO). Métodos MNDO y derivados (AM1, PM3). Métodos para cálculos espectroscópicos (INDO/S, ZINDO/S-CI)
Métodos ab initio
Generalidades. Funciones de base contraídas. Funciones primitivas básicas. Funciones primitivas adicionales. Funciones de polarización. Funciones de enlace. Funciones difusas. Elección de los coeficientes de la contracción. Conjuntos especiales de funciones de base. El error de superposición de base. La corrección counterpoise. El método del "Hamiltoniano Químico". Integrales y Derivadas. Integrales sobre funciones gaussianas. Derivadas de la energía respecto a las coordenadas nucleares.
Métodos de funcionales de la densidad
Métodos post-Hartree-Fock
Interacción de Configuraciones. Métodos Perturbacionales. Aproximación de Pares Acoplados. SCF Multiconfiguracional (MCSCF) y GVB. Interacción de Configuraciones Multireferencia (MRCI). Modelos Químicos (Gn, CBS, etc)
Análisis teórico de las PES
Generalidades. Geometría de las Hiperficies de Energía Potencial. Ajuste numérico de Hiperficies de Energía Potencial
Localización de puntos estacionarios en las PES
Localización de Mínimos. Localización de Puntos de Ensilladura. Caminos de Reacción sobre las Hiperficies de Energía Potencial. Trayectorias clásicas.
Análisis de la función de onda y de la densidad electrónica
Densidad electrónica y potencial electrostático. Momentos multipolares. Distribución puntual de la Densidad Electrónica (cargas). Análisis Poblacional de Mulliken. Análisis Poblacional de Mayer. Análisis Poblacional sobre orbitales naturales (Weinhold). Cargas derivadas del potencial electrostático. Teoría de Bader (Atomos en Moléculas, AIM). Similitud Molecular. Introducción a la similitud en Química. Similitud molecular y química cuántica(Carbó). Aspectos topológicos de la similitud molecular .
La ecuación del movimiento nuclear
Hamiltoniano de rotación-vibración. Aproximación armónica y anarmonicidad. Intensidades de las transiciones en el IR. Dinámica
Química cuántica relativista
Estos libros sirven para profundizar ideas o para cubrir material que no se ve en el curso.
Introduction to computational chemistry
Frank Jensen (J. Wiley & Sons, Chichester, 2001)
Computational chemistry: A practical guide for applying techniques to real-world problems
David C. Young (J. Wiley & Sons, New York, 2001)
Ideas of Quantum Chemistry
Lucjan Piela (Elsevier, Amsterdam, 2007)
Methods of Molecular Quantum mechanics
Valerio Magnasco, (J. Wiley & Sons, Chichester, 2009)
Molecular Modeling Basis
Frank Jensen (CRC Press, Taylor and Francis, Boca Raton, 2010)
Handbook of Computational Chemistry
Jerzy Leszczynski (ed.) (Springer Verlag, Heidelberg, 2012)