ข้อดี – ข้อเสียของ Deep Learning
ข้อได้เปรียบสำคัญของ Deep Learning เมื่อเปรียบเทียบกับ Machine Learning รูปแบบอื่นๆ คือ
ไม่จำเป็นต้องจัดโครงสร้างข้อมูล
ข้อมูลส่วนใหญ่มักบรรจุอยู่ในรูปแบบที่แตกต่างกันไป ไม่ว่าจะเป็นข้อความ ตัวเลข รูปภาพ หรือเสียง ซึ่งไม่สามารถนำมาใช้ร่วมกันได้ และจำเป็นต้องแปลงข้อมูลให้เป็นรูปแบบเดียวกันก่อนนำไปประมวลผลต่อ ในขณะที่ Deep Learning สามารถหาความสัมพันธ์ของข้อมูลต่างรูปแบบกันได้ในทันที
ไม่จำเป็นต้องจัดหมวดหมู่ข้อมูล
การจัดหมวดหมู่ข้อมูลเป็นขั้นตอนที่มีต้นทุนสูงเป็นอย่างมาก ยกตัวอย่างเช่น การแยกรูปภาพระหว่าง “สุนัข” กับ “แมว” ซึ่งจำเป็นต้องบอกให้ Machine Learning รู้ว่ารูปใดคือสุนัข รูปใดคือแมว ด้วยการใช้ภาพสุนัขและภาพแมวมากกว่าพันรูปขึ้นไป แต่ขั้นตอนนี้ไม่จำเป็นสำหรับ Deep Learning เพราะกลไกของ Deep Learning สามารถเรียนรู้จนจำแนกสุนัขออกจากแมวด้วยตัวเองได้โดยอัตโนมัติ
ไม่จำเป็นต้องกำหนดการจับคู่ข้อมูลล่วงหน้า
ระบบ Machine Learning โดยทั่วไปต้องสั่งให้ระบบต้องจับคู่ข้อมูลตามที่กำหนดเพื่อให้ได้ผลลัพธ์ เช่น การจับคู่ค่าละติจูดและลองติจูดเพื่อให้ได้ค่าพิกัด ส่วน Deep Learning สามารถหาความสัมพันธ์ระหว่างข้อมูลได้ด้วยตัวเอง ทำให้ Deep Learning สามารถหาความเชื่อมโยงระหว่างข้อมูลที่มนุษย์ไม่สามารถคาดการณ์ล่วงหน้าได้
ด้วยข้อได้เปรียบที่เหนือกว่า Machine Learning แบบอื่นๆ ทำให้ข้อดีของ Deep Learning คือความสามารถในการแก้ปัญหาที่ซับซ้อนได้อย่างหลากหลายและความยืดหยุ่นสูง โดยที่ใช้มนุษย์ในการดูแลเพียงเล็กน้อย
ข้อเสียของ Deep Learning เมื่อเปรียบเทียบกับ Machine Learning รูปแบบอื่นๆ คือ
ต้องการข้อมูลจำนวนมหาศาล
เงื่อนไขสำคัญที่ทำให้ Deep Learning สามารถแก้ปัญหาได้คือการ “เรียนรู้” จากข้อมูล นอกจากนี้ ความแม่นยำของ Deep Learning ยังแปรผันตรงกับปริมาณข้อมูล ยิ่งต้องการความแม่นยำจาก Deep Learning มาก ผู้ใช้งานจำเป็นต้องเพิ่มข้อมูลในระบบมากตามไปด้วย ทำให้ข้อจำกัดของ Deep Learning คือความต้องการข้อมูลจำนวนมหาศาลอย่างไม่มีที่สิ้นสุด
กลไกการทำงานที่ไม่สามารถอธิบายได้
การอธิบายกระบวนการของ Deep Learning ถือว่าเป็นสิ่งที่ซับซ้อนอย่างมาก เพราะหน่วยประมวลผลแต่ละหน่วยสามารถเรียนรู้ได้ด้วยตนเอง จึงทำให้เหตุผลในการ “ให้คำตอบ” ของแต่ละหน่วยประมวลผลอาจแตกต่างกันอย่างโดยสิ้นเชิง และการที่ Deep Learning ประกอบไปด้วยเครือข่ายของหน่วยประมวลผลจำนวนมาก จึงเป็นการยากที่จะให้เหตุผลที่ตายตัวกับผลลัพธ์ที่ได้จาก Deep Learning