7.2.4 POČECI TEORIJE RELATIVNOSTI
I Aristotel i Njutn verovali su u apsolutno vreme. Smatrali su da je moguće izmeniti interval između dva događaja, odnosno da bi ovo vreme bilo isto bez obzira na to ko ga meri, pod uslovom da se koristi dobar časovnik. Vreme je bilo potpuno zasebno i nezavisno od prostora. Za većinu ljudi ovo bi bilo zdravorazumsko stanovište. Pa ipak, ljudi su vremenom morali da promene svoja viđenja prostora i vremena. Iako su, kako izgleda, zdravorazumske predstave sasvim na mestu sa stvarima kao što su jabuke ili planete koje se kreću srazmerno lagano, one potpuno gube valjanost kada su posredi stvari koje se kreću brzinom svetlosti ili sasvim blizu nje.
7.2.4 SPECIJALNA TEORIJA RELATIVNOSTI
Početkom XX veka Ajnštajnova teorija relativnosti šokirala je svet. Ova teorija predviđala je drastične promene zakona klasične fizike koji su vekovima bili logični, i niko vekovima nije sumnjao u njihovu ispravnost.
Aristotel, Njutn i svi drugi naučnici pre Anštajna verovali su u apsolutno vreme. Smatrali su, naime, da je bespogovorno moguće izmeriti interval između dva događaja, odnosno da bi ovo vreme bilo isto bez obzira na to ko ga meri, pod uslovom da se koristi dobar časovnik. Vreme je bilo potpuno zasebno i nezavisno od prostora. Za većinu ljudi ovo bi bilo zdravorazumsko stanovište. Ali ipak, čovečanstvo je moralo da promeni svoja viđenja prostora i vremena. Iako su, kako izgleda, zdravorazumske predstave sasvim u redu sa stvarima kao što su jabuke ili planete koje se kreću srazmerno lagano, one potpuno gube valjanost kada su posredi stvari koje se kreću brzinom svetlosti ili sasvim blizu nje.
Najznačajnija stvar koja je doprinela nastanku Teorije relativnosti bilo je to što je Ajnštajn u fiziku uveo jedan nov pojam, pojam prostor-vremena, ovo ujedinjenje prostora i vremena, tj. posmatranje vremena kao jedne posebne dimenzije, ulazak u jedan nov četvorodimenzionalni prostor, dovelo je do mnogih čudnih pojava.
Teorija relativnosti sastoji se od dva glavna dela: Specijalna teorija relativnosti (STR), objavljena 1905. god i Opšta teorija relativnosti (OTR), objavljena 1916. godine. STR razmatra samo predmete ili sisteme koji se, jedni prema drugima, kreću ili konstantnom brzinom (neubrzani sistemi) ili se uopšte ne kreću (brzina jednaka nuli). OTR razmatra predmete ili sisteme koji se jedni prema drugima kreću sa određenim ubrzanjem (ubrzavaju ili usporavaju).
7.2.4.1 Postulati Specijalne teorije
Upoznavši se sa svim problemima nastalim tokom vršenja eksperimenata u pokušaju detekcije etera Ajnštajn je izveo dva veoma značajna zaključka. Ti zaključci poznati su kao dva osnovna postulata STR, i oni su temelj na kome se gradi cela teorija.
Svi fizički zakoni izražavaju se u istom obliku u svim
sistemima koji se kreću ravnomerno pravolinijski.
Prvi postulat kaže: svi fizički zakoni izražavaju se u istom obliku u svim sistemima koji se kreću ravnomerno pravolinijski. Ovaj postulat predstavlja tzv. Ajnštajnov princip relativnosti, koji Galilejev princip relativnosti uopštava sa mehaničkih na sve fizičke zakone. Iz ovog postulata se takođe izvodi i zaključak da se eter ne može detektovati. Ajnštajn je do ovog postulata došao vrlo jednostavnim razmišljanjem.
Zamislimo čoveka koji se nalazi u vozu i posmatra vagon drugog voza koji se nalazi neposredno pored njega. Ako jedan od ova dva voza krene, čovek bi lako mogao da dođe u zabunu koji se voz zapravo kreće. Naravno, ovde je lako odrediti ko se zapravo kreće, potrebno je samo pogledati bilo koji predmet pored pruge, ali zamislimo sada nekog posmatrača u dalekoj budućnosti. Neka taj čovek krene sa Zemlje na svemirsko putovanje, i neka se on konstantno kreće brzinom od 8.000 km/h u odnosu na Zemlju. Dok on tako krstari kroz prostor i izgubi Zemlju iz vida, odjednom iza sebe opaža drugu raketu, i biva iznenađen lakoćom kojim ga ova raketa pretiče. Vozač ove druge rakete čak može da pomisli da se raketa koju zaobilazi uopšte ne kreće! Kako će ovaj "zvezdani putnik" da dokaže da se kreće? Sve što može da odredi je brzina kojom je druga raketa prošla pored njega, i ništa više od toga. Ako bi ova brzina bila 1.600 km/h može se doći do više različitih zaključaka.
Najrealniji zaključak je taj da pošto pilot zna da se on kreće brzinom od 8.000 km/h u odnosu na Zemlju, a da je druga raketa prošla brzinom od 1.600 km/h pored njega, brzina te druge rakete u odnosu na Zemlju 9.600 km/h, ali ovo ne mora biti tačno! To isto tako može da znači da se on sada kreće brzinom od 3.000 km/h a druga raketa brzinom od 4.600 km/h u odnosu na Zemlju. Ili, ma koliko to izgledalo čudno, možda se ova druga raketa uopšte ne kreće u odnosu na Zemlju a da se posmatrač kreće unazad, brzinom od 1.600 km/h!
Brzo se dolazi do zaključka da je bez korišćenja nekog "nepokretnog" predmeta radi merenja brzine posmatrača nemoguće reći ko se kreće a ko miruje, ako neko uopšte miruje. Nemoguće je napraviti neki instrument koji bi pokazivao da li se posmatrač u odnosu na nešto kreće ili ne. U stvari ako bi se posmatrač nalazio negde daleko od svih zvezda i planeta, bez ičega što bi mogao da koristi kao referentnu tačku za merenje brzine, on nikad neće saznati da li se kreće ili ne!
Ovo je bila činjenica do koje je Ajnštajn došao – svako kretanje je relativno1 (odatle i naziv teorija relativnosti). Nikada ne možemo govoriti o apsolutnom kretanju, već samo o kretanju u odnosu na nešto drugo. I uopšte se ne može reći da se neki predmet kreće tom-i-tom brzinom, već se mora reći da ima tu-i-tu brzinu u odnosu na nešto.
Lako se može zamisliti razgovor koji će se odvijati negde u budućnosti između oca i njegovog sina koji uživa u putovanju kroz vasionska prostranstva. Otac upozorava sina da svoju raketu ne vozi brže od 1600 km/h, a sin mu odgovara: "U odnosu na Sunce, tata, ili na Sirijus?"
Iz ovoga se lako zaključuje zašto stacionarni eter ne može da se detektuje. Ako bi on postojao i ispunjavao celokupnu vasionu, morao bi da miruje, njegovo mirovanje bi bilo apsolutno, a Prvi postulat upravo kaže da ne postoji apsolutno mirovanje.
Brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista je u sv inercijalnim sistemima
Drugi postulat STR kaže da je brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista u svim inercijalnim sistemima. Ako bi se jedan dečak nalazio na platformi i bacio loptu brzinom od 24 km/h to znači da bi se lopta u odnosu na njega kretala tom brzinom bez obzira da li se platforma kreće ili ne. Ako bi se platforma kretala, na primer, prema mostu brzinom od 8 km/h a dečak baci loptu prema mostu brzina lopte i platforme će se sabrati i dati ukupnu brzinu lopte u odnosu na most, i tom brzinom će lopta udariti u most. Ako bi se platforma udaljavala od mosta a dečak opet bacio loptu ka mostu brzina lopte u odnosu na most bila bi jednaka razlici brzina platforme i lopte.
U malo složenijoj situaciji, gde ulogu dečaka igra neka daleka zvezda, mosta – teleskop na Zemlji, a ulogu lopte preuzima svetlosni talas koji putuje sa zvezde do Zemlje situacija se malo komplikuje. Svetlosni talas sa zvezde putuje brzinom od 300.000 km/s u odnosu na zvezdu. Ako bi se zvezda i Zemlja približavale relativnom brzinom od 160.000 km/s, analogno situaciji sa dečakom, očekivali bi smo da se brzine sabiraju, odnosno svetlosni talas bi trebalo da "udari" u teleskop brzinom od 460.000 km/s, i obrnuto ako se zvezda i Zemlja udaljavaju brzine bi trebalo da se oduzimaju i daju 140.000 km/s. Na ovakav način posmatrač bi odredio dve različite brzine svetlosti, i to je potpuno ispravno sa stanovišta Njutnove fizike, ali je u suprotnosti sa Drugim postulatom. Prema Drugom postulatu brzina svetlosti u oba slučaja mora da iznosi 300.000 km/s.
Iskaz ovog postulata bio je revolucionaran. Ipak, Ajnštajn ga je uzeo kao jedan od osnovnih postulata STR, bez obzira na to što je izgledalo da je u suprotnosti sa zdravim razumom, jer su svi eksperimenti navodili na taj zaključak. Verovalo se da je to jedan od osnovnih zakona vasione.
Kako su ova dva postulata bila u takvoj suprotnosti sa opštim mišljenjem tog vremena, bilo je neophodno mnogo više od njihovog predstavljanja javnosti. Jer, bez dalje potpore, oni bi samo bili interesantni a ne bi dokazivali ništa: Tako su, polazeći od ovih postulata izvedene mnoge jednačine koje su ne samo objašnjavale određene fenomene, nego su omogućavale i izvesna predviđanja, koja su kasnije bila eksperimentalno verifikovana. To je ustvari najstrožija provera svake teorije: ne samo da omogući zadovoljavajuće objašnjenje svih zagonetki nekog problema, nego da učini i potpuno nova i drugačija predviđanja koja će tek kasnije biti eksperimentalno potvrđena.
Da bi se premostila praznina između ovih postulata, koji su sami po sebi apstraktni, i jednačina koje vode do potvrde i praktičnih primena teorije, postulati su morali biti ugrađeni u fizičku situaciju podložnu eksperimentalnoj proveri. Kako se postulati odnose na predmet koji se kreće konstantnom brzinom u odnosu na posmatrača i na ponašanje svetlosnih talasa, ovo se najbolje može postići ako zamislimo posmatrača koji "opisuje" predmet koji se kreće konstantnom brzinom u odnosu na njega. Ponašanje svetlosnih talasa će uticati na opis jer je refleksija svetlosnih talasa od predmeta do posmatrača ono što omogućava posmatraču da vidi i opiše predmet. Posmatračev "opis" predmeta sastojaće se od fizičkih karakteristika koje se mere posmatračevim instrumentima (npr. dužina, masa, energija, vreme...)
Predviđanja numeričkih vrednosti vrednosti ovih karakteristika u skladu sa STR stavljaju se u matematički oblik da bi mogla da se uporede sa stvarnim merenjima.
Ako pretpostavimo da se dve identične rakete A i B kreću jedan prema drugoj konačnom brzinom. Obe rakete su opremljene najelementarnijim naučnim instrumentima, lenjirom i časovnikom, koji su prethodno upoređeni tako da se zna da su instrumenti u raketi A identični instrumentima u raketi B. Analiza počinje u trenutku kad B prolazi pored A, njihovi časovnici pokazuju isto vreme, i u tom trenutku događa se eksplozija obližnje supernove. Ni raketa A ni raketa B još nisu svesne da je zvezda eksplodirala, jer svetlosni talasi još nisu stigli do njih.
Posle kraćeg vremena svetlosni talasi nastali prilikom eksplozije stižu do raketa A i B koje će u tom trenutku biti na rastojanju x. Prema II postulatu posmatrači na A i B vide svetlosne talase koji dolaze istom brzinom u odnosu na njih, tako da ako c predstavlja brzinu svetlosnog talasa za A, a c' za B, onda se može reći da je c=c'. Sada se unesu rastojanja d i d' (između zvezde i posmatrača) i vremena koja pokazuju njihovi časovnici t i t', i analiza produži da bi se uračunalo njihovo međusobno rastojanje, njihova relativna brzina, njihova vremena, brzina svetlosti, itd.
Jednačine koje se dobijaju nazivaju se jednačine Lorencovih transformacija, jer je Lorenc prethodno došao do istih jednačina na osnovu svoje teorije. Koristeći jednačine Lorencovih transformacija možemo sada predvideti rezultate koje će posmatrač sa jedne rakete dobiti za masu, dužinu i td. druge rakete. Kako postulati sadrže rezultate koji su u suprotnosti sa svakodnevnim iskustvom, rezultati koji se dobijaju na osnovu Lorencovih transformacija mogu biti neočekivani i naizgled čudni. Razlog što se Teorija relativnosti, uopšte uzev, smatra neshvatljivom, nije to što je teško razumeti njene rezultate, nego što je u njih teško poverovati.
7.2.4.2 Kontrakcija dužine
Ako bi posmatrač na raketi A bio u mogućnosti da izmeri dužinu rakete B kada se one jedna prema drugoj kreću brzinom v, matematički rezultat će predviđati da će B izgledati kao da se skratila, a njena dužina biće data formulom:
gde je L' dužina koju A dobija za B, a L je stvarna dužina B, v njihova relativna brzina, a c brzina svetlosti.
Ako bi rakete A i B imale dužinu od po 5 metara kada jedna u odnosu na drugu miruju. Kada se rakete udaljavaju brzinom od 150.000 km/s onda se na osnovu jednačine (1) određuje da je prividna dužina rakete B, merena sa A, 4,33 metara; ako bi se udaljavale brzinom od 260.000 km/s onda će gledano sa rakete A dužina rakete B biti približno 2,5 metara.
Ista ova formula važi i ako posmatrač iz rakete B meri dužinu rakete A. Na rezultat ne utiče to da li se rakete udaljavaju jedna od druge ili se približavaju. Rezultat zavisi samo od njihove relativne brzine.
Ako bi posmatrač na reketi A merio dužinu svoje rakete bez obzira na kretanje rakete B on će uvek dobiti da je dužina njegove rakete 5 metara, jer se rakete ne kreće u odnosu na samu sebe. Isto važi i za posmatrača u raketi B, za njega će dužina rakete B uvek iznositi 5 metara.
Ovaj efekat kontrakcije dužine može se jednostavno iskazati: uvek kad se jedan posmatrač kreće u odnosu na drugog, bez obzira da li se približava ili udaljava, obojici će izgledati da se onaj drugi skratio u pravcu kretanja. Međutim, nijedan posmatrač neće zapaziti nikakvu promenu u svom sistemu.
Efekat kontrakcije dužine zapaža se samo pri brzinama koje su približne brzini svetlosti. Kako su skoro sve brzine poznate na Zemlji, u svakodnevnom životu, nemoguće je zapaziti efekat kontrakcije. Ako bi se na primer avion kretao brzinom od 1.200 km/h u odnosu na posmatrača, na osnovu jednačine (1) može se izračunati da će se on skratiti za nekoliko milionitih delova milionitog dela centimetra, otprilike za prečnik jednog atomskog jezgra. Ovako mala skraćenja nemoguće je detektovati ni najsavršenijim instrumentima, a kamoli golim okom.
Efekat skraćivanja se iz istorijskih razloga još naziva i Ficdžerald-Lorencova kontrakcija, i on je slikovito opisan, ne baš uspelim, stihovima:
Bio jednom jedan momak po imenu Džon.
U mačevanju nenadmašan beše on.
Tako mu je bila brza reakcija,
da je Ficdžeraldova kontrakcija
do balčaka njegov rapir skratila!
7.2.4.3 Porast mase sa brzinom
Pretpostavimo sada da rakete A i B imaju jednaku masu kada su na Zemlji i kada su jedna prema drugoj u relativnom mirovanju. Neka masa raketa iznosi po 1.000 kg. Ako posmatrač iz rakete A meri masu rakete B kada se one relativno kreću, videće da se masa rakete B povećala i da je njen iznos dat formulom:
gde je m' vrednost koju A dobija za masu B, m je prvobitna masa B ili, kako se drugačije ona naziva, masa u mirovanju, v je njihova relativna brzina, a c brzina svetlosti. Na osnovu jednačine (2) dolazi se do zaključka da ako rakete A i B imaju masu od po 1.000 kg dok miruju na Zemlji, onda će kad se budu kretale relativno brzinom od 150.000 km/s izgledati da B ima masu od 1.200 kg posmatrano iz rakete A. Pri brzini od 260.000 km/s posmatrač iz rakete A izmeriće da B ima masu od oko 2.000 kg !
Ako bi posmatrač iz rakete B takođe merio masu rakete A dok se one relativno kreću jedna u odnosu na drugu, zaključio bi da se i masa rakete A povećava saglasno formulu (2). Ako posmatrači u raketi A i B mere masu svoje rakete oni će uvek dobiti da masa njihove rakete iznosi tačno 1.000 kg, nezavisno od toga da li se raketa kreće ili ne, jer se ona sigurno ne kreće u odnosu na samu sebe.
Kao slikovit primer porasta mase sa brzinom može se navesti brod koji plovi okeanom. Brod za sobom uvek povlači izvesnu količinu vode. Što brže plovi, više vode će povlačiti za sobom. Zbog toga izgleda kao da brod povećava svoju masu što brže plovi, jer voda koju povlači za sobom kreće se zajedno sa brodom i postaje deo brodskog tovara.
Treba napomenuti i to da porast mase ne znači da se predmet povećao u smislu fizičkih dimenzija (dužina, širina. visina), čak štaviše ne samo da se predmet nije povećao on je postao manji!
7.2.4.4 Sabiranje brzina
Neka se posmatraču istovremeno približavaju voz i automobil, i to oba brzinom od po 100 km/h u odnosu na posmatrača. Prema tome, ako bi posmatrač merio brzinu voza i automobila dobio bi da ta brzina iznosi tačno 100 km/h. I obrnuto ako bi mašinovođa ili vozač automobila merili svoju brzinu u odnosu na posmatrača dobili bi isti rezultat. Ali, ako bi mašinovođa izmerio svoju brzinu u odnosu na automobil dobio bi da ona iznosi 200 km/h, jer se i voz i automobil kreću u odnosu na nepokretnog posmatrača brzinom od 100 km/h. Isto važi i za vozača automobila, i on se u odnosu na voz kreće brzinom od 200 km/h. Ovakve situacije su vrlo česte u svakodnevnom životu i redovno se koristi jednačina:
gde je vAB relativna brzina kojom se A kreće u odnosu na B (tj. brzina voza u odnosu na automobil, ili obrnuto), vA i vB je brzina A, tj. B, u odnosu na posmatrača.
Ako bi se posmatrač sada našao u sličnoj situaciji samo što bi umesto voza posmatrao svemirski brod A koji se kreće brzinom svetlosti, a umesto automobila drugi svemirski brod B koji bi putovao brzinom jednakoj polovini brzine svetlosti on bi lako odredio brzine ova dva svemirska broda. Piloti u brodovima takođe lako određuju svoje brzine u odnosu na posmatrača, ali šta će se desiti kada pilot jednog broda, npr. broda B, proba da odredi svoju brzinu u odnosu na drugi brod A? Vođen prethodnom logikom od bi dobio da brzina broda B u odnosu na A iznosi 1,5c, tj 450.000 km/s. Ako bi brzina broda B u odnosu na posmatrača bila 0,99999...c i pilot sada proba da odredi brzinu u odnosu na brod A on bi trebalo da dobije da je brzina 1,99999...c ali prema STR ne važi jednačina (3) i relativna brzina broda B u odnosu na brod A biće jednaka brzini svetlosti u oba ova slučaja !
Specijalna teorija relativnosti daje jedan novi zakon za određivanje relativnih brzina i taj zakon iskazan je formulom:
gde su vA i vB relativne brzine kojima se A i B kreću prema nepokretnom posmatraču, a c je brzina svetlosti.
Ako bi na primer uzeli da brzine vA i vB iznose po 160.000 km/s, relativna brzina tela A prema telu B bila bi 250.000 km/s prema jednačini (4), a ne 320.000 km/s kako daje jednačina (3). Lako se uočava da ovde dve jednačine daju dve različite vrednosti za jednu istu stvar pa prema tome ne mogu obe da budu ispravne! Za sve praktične primene jednačina (3) se može smatrati ispravnom kada su brzine znatno manje od brzine svetlosti, ali kada su brzine približne brzine svetlosti mora se koristiti jednačina (4). Videli da razlika u vrednostima koje daju ove dve jednačine pri brzinama od 160.000 km/s iznosi 70.000 km/s, ali ako bi brzine bile na primer 160 km/h, rezultat koji daje jednačina (3) razlikovao bi se od rezultata jednačine (4) za oko dva milionita dela santimetra.
7.2.4.5 Maksimalna moguća brzina
Od svih predviđanja koja proizilaze iz STR, verovatno je najčudnije ono da postoji određena brzina preko koje se ništa ne može kretati. Koja je to brzina lako se može naslutiti iz jednačine (1), koja određuje skraćenje predmeta sa brzinom. Na osnovu te jednačine vidi se da predmet postaje sve kraći i kraći kako se brzina povećava. Ako brzina postaje sve veća i veća predmet će se sve više smanjivati, kada njegova brzina bude približna brzini svetlosti dužina će biti približna nuli, u onom trenutku kada brzina postane jednaka brzini svetlosti predmet će nestati.
Ako pretpostavimo da brzina nastavi da raste. Ako bi brzina bila dva puta veća od brzine svetlosti, tj. v = 2c, pod korenom se dobija –3, odnosno dužina predmeta je sada prvobitna brzina pomnožena sa korenom iz –3. Kako je kvadratni koren iz negativnog broja imaginaran broj to znači da će i dužina predmeta biti imaginarna, tj. predmet neće postojati.
Na osnovu jednačine (2) moguće je odrediti šta će se dešavati sa masom predmeta kada se njegova brzina približava brzini svetlosti. Sa porastom brzine, izraz pod korenom se smanjuje. Kako vrednost razlomka raste kako mu se imenilac smanjuje, masa predmeta raste. Ako brzina v toliko poraste da se izjednači sa brzinom svetlosti, onda će imenilac postati jednak nuli, što znači da će masa postati beskonačno velika.
Iz ovoga moguće je izvući samo jedan zaključak – da je brzina svetlosti maksimalna moguća brzina. Nijedan predmet ne može putovati brže od svetlosti, jer ne samo što mu se dužina smanjuje na nulu nego će i njegova masa postati beskonačno velika. Ustvari, tačnije je reći da se materijalni predmeti koji su poznati u svakodnevnom životu nikada ne mogu kretati brzinom svetlosti jer bi njihova masa tada postala beskonačno velika, što znači da bi bilo potrebno beskonačno mnogo energije da se dovedu do te brzine.
Na osnovu ovoga vidi se zašto je neophodna jednačina (4). Ako bi koristili samo jednačinu (3) u nekim slučajevima relativna brzina dva tela mogla bi da bude veća od brzine svetlosti, što je nemoguće. Bez obzira na brzinu kojom se dva predmeta kreću u odnosu na nekog posmatrača, njihova relativna brzina uvek je manja od brzine svetlosti.
Ovakvi iznenađujući rezultati koje daje STR iskazani su i stihovima:
Kad je jednog jutra jedna dama mlada
na relativno putovanje pošla,
brže nego svetlost kretala se tada
pa je sa tog puta, sasvim iznenada,
prethodnoga dana kući svojoj došla.
7.2.4.6 Ekvivalentnost mase i energije
Najznačajnije predviđanje STR bilo je to da je srazmerno mala količina mase ekvivalentna ogromnoj količini energije. Danas je dobro poznato da je prvi ubedljiv dokaz ovog predviđanja bila eksplozija prve atomske bombe kod Alamogorda (Nju Meksiko, SAD) 16. jula 1945. godine.
Kako STR predviđa da sa porastom brzine raste i masa tela, zaključuje se da i energija tela mora da raste jer masivniji predmet ima veću energiju od lakšeg ako su im brzine jednake. Moguće je pokazati da je dodatna energija, koja je povezana sa dodatnom masom, jednaka porastu mase pomnoženim sa kvadratom brzine svetlosti. Na osnovu ovakvog razmišljanja Ajnštajn je zaključio da je sva masa povezana sa energijom, a ta veza data je njegovom čuvenom formulom:
gde je E ekvivalentna energija, m masa tela, a c brzina svetlosti. Drugim rečima, ako bi se masa bilo koje supstance pretvorila u energiju, bez ostatka, iznos energije koji će se dobiti dat je formulom (5). Na primer ako bi se u jednačinu uvrstio 1 kg uglja, za energiju se dobija 250 milijardi kilovat-časova, to je približno jednako energiji koju proizvedu sve elektrane u SAD za mesec dana. Kafena kašičica ugljene prašine bila bi dovoljna da najveći brod koji plovi okeanima nekoliko puta pređe rastojanje od Njujorka do Evrope i natrag.
Iz svakodnevnog života svima je poznato da se prilikom sagorevanja uglja oslobađa neuporedivo manja količina energije. Da li to ukazuje na neispravnost STR? Prilikom običnog sagorevanja uglja energija koja se oslobađa se energija koja nastaje kao rezultat hemijskog procesa, dolazi samo do preuređivanja i novog vezivanja atoma i molekula, ali ne dolazi do merljive konverzije mase u energiju jer se ugalj pretvara u čađ, pepeo, dim, a ne nestaje. Kad bi se svi ovi krajnji produkti izmerili njihova ukupna masa opet bi bila 1 kg. Upoređivanjem količine energije koja bi nastala pri pretvaranju 1 kg uglja u energiju i običnog sagorevanja iste mase uglja vidi se da se pri sagorevanju oslobađa tri milijarde puta manje energije. Naravno, proces u kome se znatna količina mase pretvara u energiju je potpuno drugačije prirode od običnog sagorevanja.
7.2.4 Vreme u Specijalnoj teoriji relativnosti
Specijalna teorija relativnosti je podstakla mnogo drugačiji način razmišljanja o prostoru. Pokazala je da dužina, masa i energija nego tela nisu stalne već da su ove veličine usko povezane sa brzinom. Ali, Ajnštajnova Teorija je pojam vremena uvela kao novu "dimenziju". Možda najveći doprinos STR bio je vezan za doprinos koji je dala drugačijem shvatanju pojma vremena.
Kako se prema STR ponaša vreme može se videti na istom primeru koji je i do sada korišćen. Časovnici na raketama A i B pokazuju isto vreme u trenutku kada su rakete jedna pored druge, neka je, na primer, u tom trenutku bilo 12 časova. Ovo početno vreme može se nazvati nultim vremenom.
Kako vreme prolazi, rastojanje između A i B se povećava pošto se rakete kreću relativno jedna u odnosu na drugu, i posle nekog konačnog vremenskog intervala rastojanje između rakete A i rakete B iznosiće x. Ako posmatrač na A tada pogleda na svoj časovnik i uporedi sa časovnikom na B, biće iznenađen zato što ova dva časovnika ne pokazuju isto vreme – onaj koji se nalazi na B kasni. Ovu pojavu predviđa STR jer matematički rezultati pokazuju da se vreme koje pokazuju časovnici ponaša prema jednačini:
gde je t' vreme koje posmatrač A "vidi" na časovniku B, a t vreme koje posmatrač A očitava na svom časovniku. Ako se pretpostavi da je relativna brzina kojom se raketa A i B udaljavaju 150.000 km/s onda će posmatraču na raketi A izgledati da časovnik na B radi za približno 10% sporije, tj ako onaj na A pokazuje 1 čas, časovnik na B će pokazivati 54 minuta; uvek kad posmatrač na A pogleda svoj časovnik, onaj na raketi B će pokazivati 9/10 tog vremena. Ako bi relativna brzina bila 260.000 km/s onda se prema jednačini dobija da bi časovnik na B pokazivao samo polovinu vremena koje pokazuje časovnik A. Što je relativna brzina veća časovnik na raketi B će se kretati sve sporije i sporije, bez obzira da li se rakete približavaju ili udaljavaju.
Naravno, i ako bi posmatrač koji putuje raketom B uporedio vreme na svom časovniku i onom u raketi A, dobio bi da časovnik u raketi A kasni, a to kašnjenje bi takođe bilo dato jednačinom (6).
Ovaj efekat kašnjenja časovnika u STR se naziva dilatacija vremena i ona nastaje onda kada se dva posmatrača kreću relativno jedan prema drugom konstantnim brzinama, tada svakom od njih izgleda da časovnik onog drugog kasni.
Iz ovih primera može se izvesti zaključak da razlog časovnici A i B kasne jadan u odnosu na drugi nije samo u specifičnom ponašanju svetlosnih talasa već i uzrok toga i izvestan vremenski interval neophodan svetlosnim talasima da putuju od jednog do drugog časovnika. Efekat dilatacije vremena odgovoran je za jedan potpuno drugačiji pogled na vreme od onog koji korišćen ranije. Ranije se uvek smatralo da je vreme isto za sve posmatrače, ma gde se oni nalazili i ma kako se kretali, vreme je proticalo jednakom brzinom za svaku osobu i za svaki predmet u celoj vasioni. Vreme je bilo apsolutno. STR je pokazala da ovo shvatanje nije bilo tačno. Ona je pokazala da vreme protiče različitom brzinom za dva posmatrača koji se, jedan u odnosu na drugog, nalaze u relativnom kretanju.
Međutim, STR je pokazala da je vreme različito i za posmatrače koji jedan u odnosu na drugog miruju, ali koji se nalaze na velikoj udaljenosti jedan od drugog.
Ako bi dva posmatrača, jedan koji se nalazi na Zemlji i drugi koji se nalazi u blizini zvezde Aldebaran (u sazvežđu Taurus), posmatrali eksploziju supernove na zvezdi Betelgeuse (u sazvežđu Orion). Rastojanje od Zemlje do zvezde Betelgeuse iznosi 300 svetlosnih godina, od Betelgeuse do Aldebarana je 250 svetlosnih godina, a Aldebarana do Zemlje rastojanje je 53 svetlosne godine.
Neka se eksplozija supernove desi na primer 2000 godine (prema načinu kako mi merimo vreme na Zemlji). Ljudi na Zemlji ne bi videli blesak eksplozije te godine, jer je Betelgeuse udaljena 300 svetlosnih godina, što znači da bi svetlosnim talasima nastalim pri eksploziji bilo potrebno 300 godina da stignu do naše planete. To je jedini način da ljudi na Zemlji saznaju da je zvezda uništena. S druge strane, neko u okolini Aldebarana bi istu eksploziju video 2250. godine, jer je Aldebara udaljen 250 svetlosnih godina od Betelgeuse.
Lako se uočava činjenica da ovaj događaj nije simultan (istovremen) za tri različita mesta, jer svako događaj posmatra u drugo vreme, čak se možda može reći da vreme putuje brzinom svetlosti.
Pored velikih rastojanja u prostoru do razlike u simultanosti događaja može doći i pri malim rastojanjima ali onda kad su relativne brzine posmatrača približne brzini svetlosti. STR je pokazala da ako su dva događaja istovremena za jednog posmatrača ne moraju biti istovremena za sve posmatrače, čak je moguće da i redosled događaja za različite posmatrače bude različit.
Ako se na primer dva posmatrača nalaze u identičnim raketama A i B i putuju jedan prema drugom brzinom v, koja je nešto manja od brzine svetlosti, u odnosu na stacionarnog posmatrača C koji se nalazi na pola puta između ove dvojice. Na podjednakom rastojanju od posmatrača C, sa leve i desne strane, nalaze se i dve sijalice L i R. U trenutku kada rakete prolaze pored sijalica one se pale.
Kada posmatrač A prođe pred sijalice L ona će se upaliti, u istom tom trenutku pali se i sijalica R pošto je pored nje prošla raketa B. Pošto je, po pretpostavci, rastojanje od L do posmatrača C jednako rastojanju od R do C, vreme koje je potrebno da svetlost sa upaljenih sijalica L i R stigne do C je jednako, pa će događaj paljenja ove dve sijalice za posmatrača C biti simultan (istovremen). Za posmatrače u raketama A i B situacija će biti malo drugačija. Rastojanje koje treba da pređe svetlost sa sijalice L je daleko manje od rastojanja potrebno svetlosti sa sijalice R da stigne do posmatrača A. Zbog razlike u dužini potrebnog vremena posmatrač A prvo će videti da se upalila sijalica L a tek kasnije će videti paljenje sijalice R. Posmatrač u raketi B će registrovati sličnu situaciju, sa tom razlikom što će njemu izgledati da se prvo upalila sijalica R a zatim L.
Ova situacija pokazuje dva događaja koja si simultana za stacionarnog posmatrača, a nisu simultana za druga dva posmatrača. Ustvari, sa tačke gledišta posmatrača A, prvo se odigrao događaj L a zatim R, a sa tačke gledišta posmatrača B događaj R je prethodio događaju L. Niko ne može reći koji se događaj "stvarno" odigrao prvi ili su se događaji možda odigrali istovremeno, jer su sva tri posmatrača jednako upravu i nijedan od ova tri pogleda nema prednosti u odnosu na druge. STR je tako pokazala neispravnost vekovima stare ideje o istovremenosti događaja, prema kojoj dva događaja, ako su istovremena za jednog posmatrača, moraju biti istovremena i za sve ostale posmatrače. Redosled događaja je funkcija položaja posmatrača i relativne brzine u odnosu na sve druge posmatrače. Istovremenost je relativna stvar, ne postoji apsolutno vreme.
Naravno treba naglasiti i to da što je veće rastojanje u prostoru između mesta odigravanja dva simultana događaja veća će biti moguća razlika u vremenu između ta dva događaja kako ih vide različiti posmatrači pod različitim uslovima. I obrnuto, ako se rastojanje između dva "istovremena" događaja smanji do iščezavanja, tj. ako se događaji dešavaju na istom mestu , svi posmatrači, bez obzira na njihove položaje i relativne brzine, složiće se u pogledu istovremnosti ovakva dva događaja. Na primer, ako bi došlo do sudara dve rakete, svi posmatrači će videti taj sudar kao jedan usamljen događaj. Bilo bi smešno, a i protivno svim zakonima fizike ako bi bilo koj posmatrač tvrdio da se jedna raketa sudarila pre druge bez fizičkog uzroka.
7.2.4.1 Paradoks blizanaca
Predviđanja STR o dilataciji vremena navode na neke vrlo zanimljive, a možda i zastrašujuće ideje. Efekat dilatacije vremena mogao bi da ima neke vrlo interesantne primene za vasionska putovanja. STR ne samo da predviđa da će na raketi koja se kreće relativno brzinom bliskoj brzini svetlosti samo vreme proticati sporije, ona takođe predviđa da će SVI procesi biti usporeni. To znači procesi varenja hrane, biološki procesi, atomska aktivnost – sve će biti usporeno!
Ako bi na primer neki "zvezdani putnik" u dalekoj budućnosti odlučio da krene na "godišnji odmor" na primer do zvezde Arcturus (sazvežđe Bootes, Pastir) koja je udaljena 33 svetlosne godine. Ako bi putovao brzinom bliskom brzini svetlosti on će na Arcturus stići za malo više od 33 godine, ali po vremenu na Zemlji, ako bi odmah krenuo natrag na Zemlju će stići približno 66 godina nakon odlaska.
Kako se raketa celo vreme kretala ogromnom brzinom u odnosu na Zemlju svi procesi na raketi biće usporeni, putniku u raketi neće izgledati da je proteklo 33 godine za put u jednom smeru, on će stići u blizinu Arcturusa otprilike baš u vreme ručka, a kad se bude vratio na Zemlju izgledaće mu da je prošao samo jedan dan! Ali, ljudima na Zemlji to će biti 66 godina, ljudi na Zemlji će biti 66 godina stariji.
Jedan rezultat koji predviđa STR bio je izvor velike nedoumice i izvesnog neslaganja od vremena svog predstavljanja. To je tzv. paradoks blizanaca ili vremenski paradoks.
Pretpostavimo da od dva blizanca jedan odlazi na putovanje do neke daleke zvezde i natrag a drugi ostaje na Zemlji. Neka je ta zvezda udaljena 4 svetlosne godine od Zemlje, a da se raketa kreće prosečnom brzinom koja je jednaka 4/5 brzine svetlosti. Ukupno vreme za njeno putovanje biće tada oko 10 godina.
Ako uporedimo brzinu proticanja vremena za blizanca u raketi sa brzinom proticanja vremena na Zemlji, na osnovu jednačine (6) dobija se:
Ovo znači da iako je putovanje trajalo deset godina prema časovniku blizanca na Zemlji, prema časovniku onog u raketi putovanje je trajalo samo šest godina. Po povratku sa puta blizanac će shvatiti da nije ostario onoliko kolko i njegov brat koji je stao na Zemlji.
Paradoks se ovde ogleda u tome da pošto su sva kretanja relativna može da se smatra da je Zemlja otišla u svemirski prostor u pravcu suprotnom od rakete i vratila se dok je raketa mirovala. Na osnovu takvog razmatranja kretanja dolazi se do suprotnog zaključka – blizanac u raketi čekaće 10 godina na povratak svog brata, koji će misliti da je u putovanju (sa Zemljom) proveo samo šest godina.
Očigledno je da ova dva tumačenja ne mogu istovremeno biti tačna. Upravo ova kontradikcija predstavlja tzv. paradoks blizanaca.
Rešenje paradoksa je vrlo jednostavno, tačnije paradoks uopšte ne postoji pošto ove dve situacije nisu simetrične, pa nisu ni matematički reverzibilne. Razlog nepostojanja simetrije je taj što raketa na svom putovanju trpi određena ubrzanja, a pretpostavka da Zemlja odlazi na putovanje nije ispravna jer bi u tom slučaju Zemlja morala da trpi odgovarajuća ubrzanja umesto rakete, a poznato je da se to ne dešava.
STR neizbežno vodi do zaključka da će za vasionskog putnika na kružnom putovanju proći ukupno manje vremena, nezavisno od načina merenja, nego za ljude koji ostaju na Zemlji. Svaki putnik će se na Zemlju vratiti manje ostareo nego oni koji su ostali d aga čekaju. Ukupan iznos usporenja vremena zavisiće od brzine rakete u odnosu na Zemlju i ukupnog pređenog rastojanja za vreme puta.
Do fizičke osnove ovakvog zaključka može se doći poređenjem onoga što svaki blizanac vidi kad posmatra svetlosne talase primljene iz niza događaja koji se dešavaju u sistemu onog drugog.
Tokom prve polovine putovanja, zbog brzine kojom se raketa udaljava od Zemlje, svetlosni talasi događaja na Zemlji stizaće do rakete sporijim tempom, učestalošću, nego kad bi raketa mirovala. Za brzinu rakete od 4/5 brzine svetlosti, ovo usporenje je dato formulom za tzv. relativistički Doplerov pomak, prema kojoj će učestalost biti 1/3 od normalne. Na sličan način za vreme povratka blizanac u raketi posmatra događaje na Zemlji kao da se odigravaju tri puta bržim tempom. Tokom celog putovanja blizanac na raketi registruje događaje na Zemlji kao da se odigravaju prosečnim tempom od 5/3 (što je prosek za od jedne trećine i tri). Znači, rezultat je da blizanac na raketi zapaža da vreme na Zemlji protiče u proseku brže nego na raketi, pri čemu tačan odnos iznosi 5/3, zbog toga će deset godina na Zemlji biti kao šest godina na raketi.
Situacija koju vidi blizanac na Zemlji je obrnuta. On svetlosne talase događaja koji se na raketi odigravaju tokom prve polovine putovanja prima ukupno devet godina. To je zbog toga što raketi treba pet godina Zemaljskog vremena da stigne do zvezde i još četiri godine su potrebne svetlosnim talasima da stignu sa udaljene rakete do Zemlje, jer se raketa nalazi na rastojanju od četiri svetlosne godine. Tokom ovih devet godina blizanac na Zemlji posmatra događaje tri puta sporije od normalnog tempa, u skladu sa relativističkom formulom Doplerovog pomaka.
Događaje koji se odigravaju na raketi tokom povratka na Zemlju blizanac sa Zemlje će posmatrati samo poslednje, desete godine. Za vreme ove poslednje godine on će događaje na raketi videti kao da se odigravaju tri puta brže nego što je to normalno. Ukupan rezultat daje da će događaje koji na raketi ukupno traju šest godina blizanac na Zemlji posmatrati deset godina, odnosno u proseku će vreme na raketi proticati sporije nego na Zemlji.
Iz ovoga se vidi zbog čega fizička situacija nije simetrična za oba blizanca i zašto je ukupno vreme putovanja različito za svakog od njih. Blizanac sa rakete preusmerava svoju brzinu na polovini svog putovanja i počinje da zapaža događaje na Zemlji ubrzanim tempom odmah nakon toga, dok blizanac na Zemlji mora da čeka još četiri godine da svetlosni talasi događaja okretanja rakete stignu do njega pre nego što počne da prima ubrzanim tempom događaje sa rakete. Jednostavnije rečeno, zemaljski blizanac prima svetlosne talase događaja na raketi sporijim tempom ali duže vreme nego blizanac u raketi one sa Zemlje. Efekat ove asimetrije je da zemaljski blizanac posmatra manje događaja koji se dešavaju na raketi, nego što blizanac na raketi posmatra događaja na Zemlji za vreme celog putovanja.
Moglo bi izgledati da su zaključci koji proizilaze iz ovakvog putovanja u suprotnosti sa predviđanjem STR da je brzina svetlosti maksimalna brzina. Kako je putovanje dugo osam svetlosnih godina, a raketa ga prelazi za šest godina putovanja zabeleženim na raketi, prostim izračunavanjem brzine (deljenje pređenog puta sa utrošenim vremenom) dobija se da brzina kojom se raketa kretala za jednu trećinu veća od brzine svetlosti. U čemu je ovde greška?
Razlog zbog čega se javlja "prekoračenje" brzine svetlosti je to što raketa stvari ne prelazi rastojanje od osam svetlosnih godina. Kao posledica brzine rakete rastojanje do zvezde biće skraćeno za blizanca u raketi usled Ficdžerald-Lorencove kontrakcije, pa na osnovu toga korišćenjem jednačine (1) i numeričkih vrednosti iz ovog primera dobija se skraćeno rastojanje od 4,8 svetlosnih godina za povratno putovanje. Deljenjem tog iznosa sa vremenom provedenim u putu, tj. sa šest godina, lako se utvrđuje da prosečna brzina stvarno iznosi 4/5 brzine svetlosti.
5. OPŠTA TEORIJA RELATIVNOSTI
STR pokazala se veoma uspešna u objašnjavanju okolnosti da brzina svetlosti izgleda ista svim posmatračima (kako je to pokazao Majklson-Morlijev eksperiment) i u opisivanju onoga što se događa kada se stvari kreću brzinama bliskim brzini svetlosti. Ona je, međutim, bila nesaglasna sa Njutnovom teorijom gravitacije koja je tvrdila da se tela međusobno privlače silom koja zavisi od razdaljine među njima. Ovo je značilo da ako neko pomeri dalje jedno od tela, sila kojom ono dejstvuje na drugo istog trenutka bi se smanjila. Ili, drugim rečima, gravitaciona dejstva trebalo bi da se kreću beskrajnom brzinom, umesto brzinom svetlosti ili ispod nje, kako je to zahtevala posebna teorija relativnosti. Ajnštajn je preduzeo više bezuspešnih pokušaja između 1908. i 1914. da dođe do teorije gravitacije koja bi bila saglasna sa teorijom relativnosti. Konačno, 1915, postavio je teoriju koju mi danas nazivamo Opšta teorija relativnosti (OTR).
7.2.5.1 Princip ekvivalentnosti
U osnovi OTR leži jedno vrlo jednostavno, čak trivijalno zapažanje, to je tzv. princip ekvivalentnosti.
Kada se neki putnik nalazi, u liftu ako lift krene naviše on ima osećaj kao da ga nešto dodatno pritiska prema podu, ako nosi neki teret, teret postaje teži. Putniku se čini da su i on i teret otežali, a što je ubrzanje lifta teže će postajati teže.
I obrnuto, kad lift ubrzava naniže sve u njemu postaje lakše. U specijalnom slučaju, ako bi lift naniže ubrzavao ubrzanjem koje predmeti imaju kada slobodno padaju na Zemlju predmeti u liftu ne i uopšte imali težinu. Kada bi se lift ka Zemlji kretao sa još većim ubrzanjem, svaki predmet koji bi se u njemu našao bio bi pritisnut uz plafon lifta (treba napomenuti da se ovi efekti dešavaju samo kad lift ubrzava, usporava, kada se on kreće konstantnom brzinom ovi efekti se ne dešavaju).
Zamislimo sada tog putnika u raketi koja polazi na međuzvezdano putovanje. On u raketi nema težinu, jer je težina sila kojom neko masivno telo (u našem slučaju Zemlja) privlači neki predmet, a raketa se nalazi van dometa privlačenja, tj. van gravitacionog polja. Da ne bi plutao po raketi putnik mora da bude vezan za svoje sedište.
Dok raketa bude ubrzavala ka dalekoj zvezdi, svi putnici u njoj biće pritisnuti na naslone sedišta, a kad raketa uspori biće gurnuti napred (isto kao i u automobilu na Zemlji). Tom logikom će putnici u raketi povezati pritisak unazad sa ubrzanjem, a udar unapred sa kočenjem. Kad se raketa bude kretala konstantnom brzinom ovi efekti se neće javljati.
Dok raketa leti konstantnom brzinom kroz međuzvezdani prostor, prolazi pored jedne planete lutalice. Niko iz rakete ne vidi ovu planetu i malo je nedostajalo da udari u raketu dok je prolazila iza njenog repa. U trenutku prolaska ove planete putnici opet dobijaju težinu. Oni će to osetiti tako što će biti povučeni prema planeti dok ona prolazi, tj. ka naslonima njihovih sedišta. Kako niko u raketi ne zna za planetu koja prolazi iza njih, a efekat je isti kao kad je raketa ubrzavala, svi će pogrešno zaključiti da je raketa ubrzala, niko čak neće u to da sumnja.
Osnovno pitanje u vezi ovog misaonog eksperimenta je da li ljudi u raketi mogu (bez gledanja napolje) da znaju šta se zapravo desilo, da li sile koje osećaju potiču od ubrzanja ili od gravitacionog privlačenja. Odgovor je da ne postoji način da se utvrdi razlika između ove dve sile. Ajnštajn je bio impresioniran ekvivalentnošću ubrzanja i gravitacione sile i iskazao je svoje zapažanje u obliku koji je danas poznat kao princip ekvivalencije i on glasi: u jednoj tački prostora efekti gravitacije i ubrzanog kretanja su ekvivalentni i ne mogu se međusobno razlikovati.
Na osnovu principa ekvivalencije zaključuje se da je prividno povećanje težine putnika u liftu prouzrokovano ubrzavanjem lifta moguće izazvati i dodatnim gravitacionim silama. Ako bi se, na primer, lift sa putnicima prebacio na Jupiter, putnici bi osetili mnogo težim (masa Jupitera je 300 puta veća od mase Zemlje). Čovek koji na Zemlji ima 100 kg, na Jupiteru imao masu od 250 kg (ustvari, masa se neće promeniti ali čovek će na Jupiteru imati isti osećaj kao kada bi na Zemlji imao masu od 250 kg). Ne znajući za premeštanje lifta, putnici bi povećanje svoje težine pripisali ubrzanju lifta, ne znajući da je povećanje težine izazvano povećanom gravitacionom masom.
Ako bi lift, pak, bio premešten na Merkur gde sve ima tri puta manju težinu, putnici bi mislili da je to posledica toga što lift ubrzava naniže.
Na izgled princip ekvivalentnosti je vrlo jednostavno zapažanje. Međutim , tek Ajnštajn je skrenuo pažnju na ovaj zaključak. Da iz tog zaključka ništa drugo nije proizašlo, bio bi ocenjen kao zanimljiv i odmah zatim zaboravljen. Uz ovaj princip ekvivalentnosti , kao osnovni postulat OTR, Ajnštajn je primenio jednu granu matematike, koju je prethodno razvio Riman, tj. tenzorski račun i došao je do tri važna zaključka od kojih je svaki eksperimentalno proveren.
7.5.2 Ajnštajnova teorija gravitacije
Razvijajući OTR, Ajnštajn je radio na razvoju teorije gravitacije. Zato se OTR naziva i Ajnštajnova teorija gravitacije. Najbitnija stvar koju je uspela da odredi Ajnštajnova teorije gravitacije, a Njutnova teorija nije mogla, bila je tačna jednačina za putanje kojima planete putuju oko Sunca. Krajnji rezultat dobijen na osnovu OTR bio je približno isti kao kod Njutna ali ipak je postojala mala razlika. Ajnštajn je, kao i Njutn, našao da su putanje planeta elipse, ali utvrdio je da te elipse nisu stacionarne nego polako rotiraju u prostoru.
Ova rotacija orbita koju je predvidela OTR je toliko mala da se za većinu planeta jedva može detektovati. Putanja Zemlje, na primer, rotira brzinom od samo 3,8 lučnih sekundi za 100 godina. Kako prav ugao ima 324.000 sekundi vidi se koliko je ta vrednost mala. Pored toga, treba da prođe 100 godina da bi se Zemljina orbita okrenula za taj iznos. Ovom brzinom trebalo bi 34 miliona godina za jedan pun obrt Zemljine orbite.
Prema ovoj teoriji orbite planeta su ustvari slične rozetama (ovako se ponašaju i elektroni oko jezgra). Kako je brzina ove rotacije mnogo mala, treba puno vremena da rozeta bude potpuna, pa se iz tih razloga uzima da su orbite planeta eliptične, a ne rozete.
Ajnštajnova i Njutnova teorija gravitacije daju različite rezultate za iste pojave, pa prema tome jedna od njih ne može da bude tačna. Razlika u vrednostima koje ove dve teorije daju je vrlo mala, pa bez obzira na to što je osnovi Njutnova teorija ne daje potpuno tačne rezultate, nju je moguće koristiti onda kada nije neophodna neka ogromna preciznost izračunavanja.
Jedan dokaz OTR sastojao se u traganju za planetom čija orbita najviše rotira u datom vremenskom periodu. Teorija je pokazala da iznos rotacije treba da bude najveći za planete sa najvećom orbitalnom brzinom. Ali takođe je bilo potrebno da se koristi planeta čija je orbita što je moguće više eliptična, jer neke od orbita planeta, npr. Zemljina, su toliko bliske kružnim da je teško reći da li rotiraju ili ne.
Na veliku sreću desilo se da planeta Merkur ima jednu od najspljoštenijih orbita i najveću orbitalnu brzinu. Mnogo godina pre toga bilo je poznato zagonetno ponašanje orbite ove planete: imala je rotaciju od 43 lučne sekunde za 100 godina, koja se nije mogla objasniti (ukupna rotacija orbite Merkura je približno 574 lučnih sekundi za 100 god, bilo je poznato da 531 lučnu sec. treba pripisati gravitacionom efektu drugih planeta). Godine 1845. francuski matematičar Leverije pokazao je da ovaj višak rotacije može da bude posledica postojanja još jedne lanete između Merkura i Sunca. Astronomi su uporno tragali za tom planetom, ali ona nije nikad nađena (Leverije je na isti način predvideo planetu Neptun iz varijacija u orbiti Urana i ona je bila uspešno otkrivena). I Pluton je bio otkriven 1930. god kao rezultat preostalih varijacija orbite Urana.
Sve do objavljivanja OTR uzrok viška rotacije Merkura bio je misterija. Primenom OTR za izračunavanje viška rotacije u periodu od 100 godina dobijen je rezultat od 43 lučne sekunde, odnosno tačan iznos rotacije koji ranije nije mogao biti objašnjen. Bio je to prvi i najubedljiviji dokaz OTR.
7.2.5.3 Značenje zakrivljenog prostor-vremena
Ako se upoređuju samo brojni rezultati koje daju Njutnova i Ajnštajnova teorija gravitacije zaključuje se da se ove dve teorije vrlo malo razlikuju. Ali razlika u načinu na koji shvataju pojam gravitacije između ove dve teorije je ogromna. Za razliku od starinskih Njutnovih pojmova o gravitaciji kao sili, Ajnštajn je došao na revolucionarnu zamisao da gravitacija nije sila kao druge sile, već posledica činjenice da prostor-vreme nije ravan, protivno prethodnom opštem ubeđenju: ono je zakrivljeno, ili 'savijeno', pod uticajem rasporeda mase i energije u njemu. Negde daleko u vasioni, daleko od bilo kojih izvora gravitacije, prostor i vreme su savršeno ravni. Ali sa približavanjem nekom masivnom objektu, kao što je zvezda ili planeta ulazi se u predele sve veće zakrivljenosti prostor-vremena. Što je gravitaciono polje jače, tim je zakrivljenost prostor vremena naglašenija.
Tela poput Zemlje nisu bila sazdana da se kreću zakrivljenim orbitama pod dejstvom sile teže; umesto toga, ona se kreću gotovo pravom putanjom u zakrivljenom prostoru, a ta trajektorija naziva se geodezijska linija. Geodezijska linija je najkraća (ili najduža) putanja između dve tačke. Primera radi, površina Zemlje je dvodimenzioni zakrivljeni prostor. Geodezijska linija se u slučaju Zemlje naziva veliki krug i on predstavlja najkraći put između dve tačke. Budući da je geodezijska linija najkraća putanja između dva aerodroma, upravo je to put na koji će navigator uputiti pilota. U OTR, tela se uvek kreću pravolinijski u četvorodimenzionom prostor-vremenu, ali nam svejedno izgleda da idu zakrivljenim putanjama u našem trodimenzionom prostoru. (Ovo nalikuje na posmatranje aviona koji preleće preko brdovitog predela. Iako on leti pravolinijski u trodimenzionom prostoru, njegova senka klizi zakrivljenom putanjom po dvodimenzionom tlu). Zapravo, glavna ideja koja je osnovi OTR je da materija saopštava prostor-vremenu kako da se zakrivi, a zakrivljeno prostor-vreme saopštava materiji kako da se ponaša.
Intuitivno svi ljudi razumeju tri dimenzije prostora. To su jednostavno tri pravca: napred-nazad, levo-desno, gore-dole. Međutim, baš kao što lenjir meri rastojanje u pravcima prostora, sat na ruci meri rastojanja u vremenu.
Do pojave STR rastojanje između dva različita položaja određivano je samo premeravanjem rastojanja, pomoću merne trake ili nekog drugog pogodnog instrumenta. Vreme nikada nije ulazilo u merenja, jer se smatralo da je isto za dve različite pozicije. Međutim STR je pokazala da to nije tako, vreme je različito na dva različita položaja.
Zavisno od broja dimenzija "prostora" rastojanje između dve tačke se određuje na različite načine. U jednodimenzionalnom prostoru dužina OA je samo rastojanje duž x-ose i ovo merenje je trivijalno lako. Za 2D prostor dužina duži OA određuje se pomoću poznate Pitagorine teoreme . U 3D prostoru teorema se proširuje i još uvek važi ( ). Kada je STR pokazala da u izraz za rastojanje mora da bude uračunato i vreme određivanje tačne jednačine više nije bilo lako. Matematika koja obuhvata sve poznate zakone za 2D koji čine geometriju i trigonometriju u ravni razvijana je u dugom vremenskom periodu. Ovi zakoni su postepeno proširivani na tri dimenzije, i oni se nalaze u granama matematike koje se zovu sferna trigonometrija i geometrija u prostoru. Međutim, ove grane matematike nisu se mogle nositi sa dodatnim faktorom vremena, tako da je morala biti razvijena jedna potpuno nova grana matematike, tzv. tenzorski račun, da bi se taj faktor uključio. Na taj način došlo se do formule za rastojanje u prostor-vremenu koja u svom konačnom obliku izgleda ovako:
U jednačini c predstavlja brzinu svetlosti, a t vreme. Kada je uočeno da je ovaj izraz sličan Pitagorinoj teoremi sa dodatkom faktora (ct)2, sasvim je prirodan bio zaključak da se vreme ponaša kao da je četvrta dimenzija, i zbog toga se često govori o prostor-vremenu, ili prostornovremenskom kontinuumu.
Osnovna ideja OTR je da gravitacija zakrivljuje četvorodimenzionalno prostor-vreme. Naravno, za vizuelno predstavljanje četvorodimenzionalnog prostor-vremena bila bi potrebna nadljudska sposobnost. Naučnici su zbog toga smislili neke "trikove" koji pojednostavljuju razumevanje delovanja gravitacije.
Zamislimo jednu zvezdu sličnu Suncu. Ta zvezda ima veliku masu i nju okružuje jako gravitaciono polje. Zamislimo sada da iz četvorodimenzionalnog prostor-vremena oko zvezde isečemo i izvučemo jednu dvodimenzionalnu površ. Naravno, bez ikakvih teškoća možemo da zamislimo i shvatimo dvodimenzionalnu površ, tačno znamo šta znači da je neka površ ravna a šta znači da je ona zakrivljena. Posmatranjem ove površi (koja se tačno naziva hiperpovrš prostornog tipa) možemo da shvatimo kako gravitacija deluje na deo prostora zakrivljenog četvorodimenizonalnog prostor-vremena. Ovaj postupak uzimanja hiperpovrši prostornog tipa može se uporediti sa presecanjem kolača da bi se video raspored slojeva. Posmatranjem dijagrama na kome je predstavljena ova hiperpovrš (tzv. dijagrami uronjavanja) može se primetiti da je daleko od zvezde prostor ravan a najveća zakrivljenost je neposredno iznad površine zvezde gde je najjača gravitacija.
Kad je Ajnštajn prvi put formulisao svoju teoriju, predložio je i eksperiment kojim bi se njegove zamisli mogle proveriti. On je smatrao da će snop svetlosti koji prolazi blizu Sunca biti skrenut sa svoje pravolinijske putanje jer je prostor kroz koji svetlost prolazi zakrivljen. Zbog toga će likovi zvezda biti neznatno pomereni iz njihovih pravih pozicija.
Da bi se proverila ova pretpostavka ustvari bilo je potrebno izmeriti težinu svetlosnog snopa. Niko nije iznenađen činjenicom da Zemlja privlači metak ili strelu u letu. Oni imaju težinu. čak i u tetu, ali većina ljudi je iznenađena kad sazna da i svetlosni snop ima težinu. Ovo međutim nije iznenađujuće za naučnike jer se smatra da fotoni, koji sačinjavaju svetlost, imaju masu. Nije bilo moguće sakupiti hrpu fotona i staviti ih na vagu, kao što se može učiniti sa mecima, jer još niko nije uspeo da napravi klopku za hvatanje fotona (štaviše, danas se smatra da je masa fotona u stanju mirovanja jednaka nuli), pa se zbog toga fotoni moraju meriti dok su u letu. Ovo je vrlo jednostavno postići, ali teorijski – ako gravitaciono polje utiče na fotone, putanja svetlosnog snopa će biti zakrivljena što je lako utvrditi ako je zakrivljenost dovoljno velika, ali ako gravitaciono polje ne utiče na fotone onda će putanja svetlosnog snopa kroz polje biti prava linija, što se takođe lako detektuje.
Svi predmeti za Zemlji padnu oko 4,9 metara u prvoj sekundi slobodnog padanja (ako se zanemari otpor vazduha), pa se može očekivati da će i svetlosni snop koji putuje paralelno sa površinom Zemlje takođe padati, tj. biti savijen ka površini Zemlje, za isti iznos tokom prve sekunde pada. Ali, svetlosni snop putuje ogromnom brzinom tako da je praktično nemoguće otkriti ovaj efekat na Zemlji. Srećom, u Sunčevom sistemu postoji telo čije je gravitaciono privlačenje mnogo veće nego privlačenje Zemlje. To telo je Sunce. Gravitaciono privlačenje na površini Sunca je oko 27 puta veće nego na površini Zemlje, a oko 10 puta veće neo na površini Jupitera, zbog čega je Sunce najbolja "vaga" za merenje težine svetlosnog snopa.
Svetlosni snop mora da dolazi sa neke udaljene zvezde. Kada između Zemlje i zvezde nema gravitacionih masa svetlosni snop će se kretati pravolinijski. Ali pretpostavimo sada da posle nekog vremena, krećući se oko Sunca, Zemlja dođe u takav položaj da sa njene površine izgleda kao da svetlost sa zvezde samo što ne dotiče površinu Sunca.
Ovde se javlja veliki problem jer kad svetlost zvezde prolazi uz samu površinu Sunca, posmatrač neće biti u stanju da vidi zvezdu jer je Sunčeva svetlost suviše jaka. Jedino rešenje je da se posmatra svetlost zvezde za vreme totalnog pomračenja Sunca, kad Mesec totalno prekriva Sunčevu svetlost. Zbog toga je Ajnštajn predložio da se ovaj efekat potraži za vreme totalnog pomračenja Sunca.
Kako je skretanje svetlosti sa zvezde dok prolazi uz površinu Sunca tako neznatno, neophodne su precizne fotografske tehnike. Postupak se sastoji u tome da se zvezda fotografiše u odnosu na ostale zvezde kada nema Sunca a zatim se postupak ponovi za vreme totalnog pomračenja. Na toj novoj fotografiji videće se da je zvezda malo "izmeštena" iz svog prvobitnog položaja. Ajnštajn je izračunao da bi ovakvo skretanje prividnog položaja zvezde trebalo da iznosi 1,74 lučne sekunde.
Najpovoljnije potpuno pomračenje Sunca nakon objavljivanja OTR 1916. godine, bilo je 29. maja 1919. godine. Ovo pomračenje je bilo posebno pogodno jer su Zemlja i Sunce krajem maja poravnati sa mnoštvom sjajnih zvezda tako da je lako bilo izabrati neku od njih za posmatranje tokom ovog pomračenja. Za ovu priliku opremljene su dve britanske ekspedicije. Jedna, pod vođstvom A.C. Kromlina, otputovala je u Sobal u severnom Brazilu dok je druga, pod vođstvom A.S. Edingtona otišla na zapadnoafričko ostrvo Principe u Gvinejskom zalivu. Obe grupe su fotografisale veliki broj zvezda i po povratku u Englesku razvijene su fotografske ploče i upoređene sa slikama napravljenim kada Sunce nije bilo u blizini istih zvezda.
Grupa koja je bila u Sobralu našla je da su se njihove zvezde pomerile u proseku za 1,98 lučnih sekundi, dok je na snimcima sa ostrva Principe nađeno pomeranje od 1,6 lučnih sekundi. Blisko slaganje ovih vrednosti sa onim što je Ajnštajn predvideo, bilo je dovoljno da potvrdi efekat.
Tokom šest decenija, brižljivo ponavljanje ovog eksperimenta, kao i mnogih eksperimenata povezanih sa njim, nije ostavilo nikakve sumnje da je OTR daleko najpotpuniji, najtačniji, najelegantniji i najprecizniji opis gravitacije koji je čovečanstvo ikada imalo.
7.5.4 Gravitacija i vreme
OTR u osnovi ne pravi razliku između prostora i vremena, prema shvatanju OTR i prosto i vreme su samo posebne dimenzije u četvorodimenzionalnom prostoru, tj. prostor-vremenu, koji analizira OTR. Prema tome, lako je zaključiti da gravitacija ne utiče, ne zakrivljuje, samo prostorni deo ovog četvorodimenzionog prostor-vremena, nešto se mora dešavati i sa vremenskim delom. OTR predviđa da gravitacija usporava vreme. Daleko u prostoru, daleko od bilo kojih izvora gravitacije, gde je prostor-vreme savršeno ravno, časovnici otkucavaju normalnim tempom. Ali približavanjem nekom jakom izvoru gravitacije, ulaženjem u oblast sve veće gravitacione zakrivljenosti, časovnici će početi da kucaju sporije. Naravno, ako bi neki čovek otišao na takvo putovanje on tu pojavu neće opaziti jer i njegovo kucanje srca, njegov metabolizam, pa čak i misaoni procesi biti usporeni za isti faktor kao i rad njegovog časovnika. To usporavanje toka vremena moguće je otkriti samo u komunikaciji sa nekim ko je ostao daleko iza, tamo u savršeno ravnom prostor-vremenu, gde vreme protiče normalnom brzinom.
Ovakvo razmišljanje navodi na zaključak da će na planeti manje mase vreme proticati brže nego na onoj sa velikom masom. Na Zemlji će časovnik raditi jednom brzinom, na Jupiteru nešto sporije a na Suncu još sporije. Ajnštajn je izračunao da bi jednoj sekundi na Suncu odgovaralo 1,000002 sekunde na Zemlji.
Za merenje ovih neznatnih razlika, bukvalno shvaćeno, trebalo bi da se stavi časovnik na Sunce, sinhronizuje sa istim takvim časovnikom na Zemlji, i potom periodično upoređuju njihova pokazivanja. Sa navedenom razlikom u vremenu, časovnik na Suncu kasnio bi jednu sekundu za časovnikom na Zemlji nakon 500.000 sekundi, što je nešto manje od šest dana. Naravno, nemoguće je postaviti časovnik na Sunce, ali to i nije potrebno jer tamo već postoje mnogo atomski časovnici. U početku su vršeni mnogi eksperimenti i bilo je mnogo pokušaja da se registruje usporenje protoka vremena na Suncu u odnosu na Zemlju, ali svi pokušaji bili su bezuspešni.
Prvi uspešan eksperiment koji je potvrdio ovaj efekat izvršen je1960. godine, pet godina nakon Ajštajnove smrti, na Harvardskom univerzitet. Eksperiment su izvršili dr Robert V. Paund i njegov asistent Glen A. Rebka. Ova dva naučnika su eksperimentu pristupila na potpuno drugačiji način. Oni su koristili toranj visok 22,6 metara. Časovnike su predstavljala jezgra radioaktivnog Co-57. Merenjem frekvencije fotona, tj. gama zraka, koji su nastajali prilikom radioaktivnog raspada ovog elementa uspeli su da dokažu da gravitacija usporava vreme, "časovnik" koji se nalazio bliže Zemlji radio je sporije od onog na 22,6 metara visine. Ovim je definitivno potvrđena ispravnost Ajnštajnove OTR.
6. OSNOVE KVANTNE TEORIJE
Uspeh naučnih teorija, a posebno Njutnove teorije gravitacije, naveo je francuskog naučnika, Markiza Laplasa, da početkom devetnaestog veka utvrdi da je Univerzum potpuno deterministički. Laplas je smatrao da postoji skup naučnih zakona koji bi trebalo da nam omoguće da predvidimo sve što će se dogoditi u Univerzumu, pod uslovom da znamo celokupno stanje Univerzuma u datom vremenu. Primera radi, kada bismo znali položaje i brzine Sunca i planeta u nekom trenutku, tada bismo pomoću Njutnovih zakona mogli da izračunamo stanje Sunčevog sistema u bilo kom drugom vremenu. Determinizam izgleda prilično očigledan u ovom slučaju, ali Laplas je otišao i korak dalje, utvrdivši da postoje slični zakoni koji upravljaju svim ostalim oblastima, uključujući tu i ljudsko ponašanje.
Doktrini naučnog determinizma odlučno su se usprotivili mnogi autori koji su bili mišljenja da se ovim sputava sloboda Boga da utiče na svet, ali ona je ipak formalno ostala na snazi u nauci sve do ranih godina XX veka. Jedan od prvih pokazatelja da će ovo uverenje morati da bude napušteno usledio je kada je iz proračuna britanskih naučnika lorda Rejlija i sera Džejmsa Džinsa proizašlo da neki topli objekat, ili telo, kakva je zvezda, mora da zrači energiju u beskonačnom obimu. Saglasno zakonima u čiju se ispravnost verovalo u to vreme, jedno toplo telo trebalo je da odašilje elektromagnetne talase (kao što su radio-talasi, vidljiva svetlost ili rendgenski talasi) ravnomerno na svim frekvencama. Primera radi, toplo telo trebalo bi da zrači istu količinu energije na frekvencama između jedan i dva miliona talasa u sekundi, kao i na frekvencama između dva i tri miliona talasa u sekundi. Budući da je frekvenca talasa neograničena, to bi značilo da je ukupna energija zračenja beskonačna.
Da bi izbegao ovaj očigledno besmislen ishod, nemački naučnik Maks Plank izložio je 14. decembra 1900. godine zamisao da svetlost, rendgenski zraci i ostali talasi ne bivaju emitovani u proizvoljnom obimu, već samo u određenim paketima koje je on nazvao kvantima. Osim toga, svaki kvant ima određenu količinu energije koja je tim veća što je veća frekvenca talasa, tako da bi na dovoljno visokoj frekvenci emitovanje samo jednog kvanta zahtevalo više energije nego što je uopšte raspoloživo. Prema tome, zračenje na visokim frekvencama bilo bi smanjeno, a i stopa kojom telo gubi energiju bila bi konačna.
Kvantna hipoteza sasvim je dobro objasnila izmerenu količinu emitovanog zračenja toplih tela, ali njen uticaj na determinističku doktrinu bio je shvaćen tek 1926, kada je jedan drugi nemački naučnik, Verner Hajzenberg, formulisao svoje znamenito načelo neodređenosti. Da bi se predvideli budući položaj i brzina neke čestice, potrebno je tačno izmeriti njen sadašnji položaj i brzinu. Očigledni način da se to učini jeste osvetliti česticu. Čestica će reflektovati jedan deo talasa svetlosti, što će ukazati na njen položaj. No, položaj čestice neće se moći tačnije odrediti nego što iznosi razmak između dva brega svetlosnog talasa, tako da je potrebno koristiti svetlost kratkih talasnih dužina da bi se precizno odredio položaj čestice. Prema Plankovoj kvantnoj hipotezi, međutim, ne može se upotrebiti proizvoljno mala količina svetlosti; treba uzeti bar jedan kvant. Ovaj kvant će poremetiti česticu i promeniti njenu brzinu na način koji ne možemo predvideti. Štaviše, što tačnije merimo položaj, to treba koristiti kraće talasne dužine svetlosti, pa je tako veća i energija jednog kvanta. A time će i brzina čestice biti u većoj meri poremećena. Drugim rečima, što tačnije pokušavate da izmerite položaj čestice, to manje precizno možete izmeriti njenu brzinu i obrnuto. Hajzenberg je pokazao da proizvod neodređenosti položaja čestice, neodređenosti brzine čestice i mase čestice ne može biti manji od određene veličine koja je poznata kao Plankova konstanta. Ovo ograničenje ne zavisi od načina na koji pokušavate da izmerite položaj ili brzinu čestice, kao ni od tipa čestice. Hajzenbergovo načelo neodređenosti predstavlja temeljno, neumitno svojstvo sveta.
Načelo neodređenosti izvršilo je veoma važan uticaj na naš način viđenja sveta. Čak ni sada mnogi filozofi još nisu postali svesni ovog uticaja, tako da je on i dalje predmet ozbiljnih kontroverzi. Načelo neodređenosti označilo je kraj sna o jednoj teoriji nauke, o jednom modelu Univerzuma koji bi bio potpuno deterministički: sasvim je izvesno da se ne mogu tačno predviđati budući događaji, ako se ne može precizno izmeriti čak ni trenutno stanje Univerzuma!
Nov pogled na stvaran svet omogućio je Hajzenbergu, Ervinu Šredingeru i Polu Diraku da tokom dvadesetih godina XX veka preformulišu mehaniku u jednu novu teoriju koja je dobila naziv kvantna mehanika i koja se temelji na načelu neodređenosti. U ovoj teoriji, čestice više nemaju zasebne i sasvim određene položaje i brzine koji se ne mogu posmatrati. Umesto toga, one imaju kvantno stanje koje predstavlja kombinaciju položaja i brzine. Ustvari, u kvantnoj teoriji čestice više nisu samo čestice, a talasi nisu samo talasi, kvantna teorija uvodi dualnu prirodu materije po kojoj se svakoj čestici pripisuje talas određene frekvence, a svakom talasu se pripisuje odgovarajuća korpuskularna struktura.
Uopšteno govoreći, kvantna mehanika ne predviđa jedinstven i određen rezultat nekog posmatranja. Naprotiv, ona predviđa veći broj različitih mogućih rezultata i govori nam o tome kakvi su izgledi svakog od njih. Drugim rečima, ukoliko se preduzme isto merenje na velikom broju sličnih sistema, koji su svi započeli na isti način, ustanoviće se da će rezultat merenja biti A u izvesnom broju slučajeva, B u nekom drugom broju i tako dalje. Moguće je predvideti približan broj puta kada će rezultat biti A ili B, ali se ne može predvideti poseban rezultat nekog pojedinačnog merenja. Kvantna mehanika, dakle, uvodi neizbežan elemenat nepredvidljivosti ili nasumičnosti u nauku. Ajnštajn se ovome veoma protivio, uprkos važnoj ulozi koju je sam odigrao u razvoju ove zamisli. On je, naime, dobio Nobelovu nagradu upravo za doprinos postavljanju kvantne teorije. No, Ajnštajn nikada nije prihvatio ideju da Univerzumom vlada slučajnost; njegovo gledanje na ovu stvar sažeto je iskazano u znamenitoj rečenici: "Bog se ne igra kockicama!" Većina drugih naučnika, međutim, bila je spremna da prihvati kvantnu mehaniku zato što se ona savršeno slagala sa nalazima eksperimenata. I stvarno, bila je to izuzetno uspela teorija, koja stoji u temelju gotovo celokupne moderne nauke i tehnologije. Ona upravlja ponašanjem tranzistora i integrisanih kola, koji predstavljaju ključne delove elektronskih uređaja kao što su televizori i računari, a u osnovi je i moderne hemije i biologije. Jedina područja fizike u koja kvantna mehanika još nije prikladno uvedena jesu gravitacija i makrokosmičko uređenje Univerzuma.
2.2 Metode analize pojedinih matematičkih disciplina
Metode analiza odnose se na one matematičke discipline na bazi teorije verovatnoće sa kojima se ocenjuju performanse pouzdanosti i verovatnoća rada bez otkaza reduktora SOND 450. Analiza je potrebna radi lociranja pripadajućih obaveza učesnika u definisanju životnog ciklusa delova reduktora, i tipa održavanja istih.
Postavlja se pitanje odnosa teoriske matematičke statistike i verovatnoće i pouzdanosti, kao i empiriske pouzdanosti prema praksi održavanja i potrebama održavanja.
Pitanje potrebe analize i istraživanja u održavanju moguće je organizovati do nivoa prikupljanja podataka o zastojima i kvarovima sa zamenom delova. Iz takvih baza podataka moguće je analizirati trend promena stanja posmatranog uzorka, kao podloge za donošenja odluka u rukovođenju održavanjem. Domet matematičke statistike i verovatnoće neophodan je za nivo proizvođača reduktora i njegovih delova. Kada je u pitanju održavanje potrebna je lista sa određenim vremenom za zamenu delova reduktora.
Kakva je veza matematičke statistike i verovatnoće sa opštim zakonitostima u prirodi, drugim zakonom termodinamike i stanjem sistema, entropijom? Osnovna veza jeste sadržaj ove analize, po kojoj su određivane uloge učesnicima u zatvaranju, preko veličine i vrednosti trajanja promena u vremenu.
U postupku održavanja se, nakon što se izvrši neka rekonstrukcija ili uvede novina u regeneraciji, obrađuju podaci o tome kako bi se odredio trend u narednom periodu pod pojmom empiriske pouzdanosti, računjanjem pouzdanosti tog dela.