Propósito: con la realización de esta TIA usted podrá reconocer los términos y conceptos clave necesarios para la comprensión de los asuntos que abordará en el estudio de este Módulo Académico de Aprendizaje.
Orientaciones: Lea comprensivamente la definición de todos y cada uno de los términos que aquí se presentan y que es necesario que los reconozca, para la comprensión de los asuntos que estudiará. Se recomienda que haga una búsqueda en Internet de otros significados que encuentre con el fin de comprender otras posturas y reconocer las acepciones propias de la Institución Universitaria Pascual Bravo.
Antiderivada
En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f. Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo
Continuidad
En matemáticas, una funcióncontinua es aquella para la cual, intuitivamente, para puntos cercanos del dominio se producen pequeñas variaciones en los valores de la función; aunque en rigor, en un espacio métrico como en variable real, significa lo contrario, que pequeñas variaciones de la función implican que deben estar cercanos los puntos. Si la función no es continua, se dice que es discontinua. Una función continua es aquella cuya gráfica puede dibujarse sin levantar el lápiz del papel (más formalmente su grafo es un conjunto conexo).
Derivada
En matemática, la derivada de una función mide la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en cierto intervalo, cuando el intervalo considerado para la variable independiente se torna cada vez más pequeño. Por ello se habla del valor de la derivada de una función en un punto dado.
Integración
La integración es un concepto fundamental del cálculo y del análisis matemático. Básicamente, una integral es una generalización de la suma de infinitos sumandos, infinitamente pequeños.
El cálculo integral, encuadrado en el cálculo infinitesimal, es una rama de las matemáticas en el proceso de integración o antiderivación. Es muy común en la ingeniería y en la ciencia; se utiliza principalmente para el cálculo de áreas y volúmenes de regiones y sólidos de revolución.
Integral
La integral definida es un concepto utilizado para determinar el valor de las áreas limitadas por curvas y rectas. Dado el intervalo [a, b] en el que, para cada uno de sus puntos x, se define una función f (x) que es mayor o igual que 0 en [a, b], se llama integral definida de la función entre los puntos a y b al área de la porción del plano que está limitada por la función, el eje horizontal OX y las rectas verticales de ecuaciones x = a y x = b. La integral definida de la función entre los extremos del intervalo [a, b] se denota como:
Límite
En análisis real y complejo, el concepto de límite es la piedra de toque que formaliza la noción intuitiva de aproximación hacia un punto concreto de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a un determinado valor. En el análisis los conceptos de series convergentes, derivada e integral definida se fundamentan mediante el concepto de límite.
Sólidos de revolución
Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que es contenida en su mismo plano. En principio, cualquier cuerpo con simetría axial o cilíndrica es un sólido de revolución.
Sumatoria
El sumatorio (también conocido como operación de suma, notación sigma o símbolo suma), es una notación matemática que permite representar sumas de varios sumandos, n o incluso infinitos sumandos, evitando elempleo de los puntos suspensivos o de una explícita notación de paso al límite. Se expresa con la letra griega sigma mayúscula (Σ).
Teorema fundamental del cálculo
consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas.1 Esto significa que toda función acotada e integrable (siendo continua o discontinua en un número finito de puntos) verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo.