L'algoritmo di Euclide è un algoritmo per trovare il massimo comune divisore (indicato di seguito con MCD) tra due numeri interi. È uno degli algoritmi più antichi conosciuti, essendo presente negli Elementi di Euclide intorno al 300 a.C.; tuttavia, probabilmente l'algoritmo non è stato scoperto da Euclide, ma potrebbe essere stato conosciuto anche 200 anni prima. Certamente era conosciuto da Eudosso di Cnido intorno al 375 a.C.; Aristotele (intorno al 330 a.C.) ne ha fatto cenno ne I topici, 158b, 29-35. L'algoritmo non richiede la fattorizzazione dei due interi.
Dati due numeri naturali a e b, si controlla se b è zero (questa prima fase rientra ovviamente nell'ambito di un uso moderno dell'algoritmo ed era ignorata da Euclide e dai suoi predecessori, che non conoscevano lo zero). Se lo è, a è il MCD. Se non lo è, si divide a / b e si assegna ad r il resto della divisione; Se r = 0 allora si può terminare affermando che b è il MCD cercato, altrimenti occorre assegnare a = b e b = r e si ripete nuovamente la divisione.