Multi-dimensional Vibrational Circular Dichroism (Springer-Nature, 2024, 3/30), LINK
Hisako Sato, Jun Yoshida, Akihiko Yamagishi,
57. Photoregulation of the Chiral Nematic Phase by Using a Hexa-Arylazopyrazole-Substituted Co(III) Complex,
Hoan Quan Tran, Shinichiro Kawano, Jun Yoshida, Kentaro Tanaka, Bart Jan Ravoo
Precision Chemistry, accepted.
56. Optically active micellar-cubic liquid crystals from quasi-racemic octahedral metallomesogens,
S. Akiba, K. Nishimoto, H. Yuge, H. Sato, G. Watanabe,* M. Hara,* J. Yoshida*
Macromolecular Rapid Communications, accepted.
A full-text, read-only version, DOI (Journal), DOI (ChemRxiv)
(Wiley のHot Topcsに選ばれました。Hot Topic: Liquid Crystals)
55. Gold nanoparticles capped with liquid crystalline azobenzene ligands: the effect of terminal groups on particle arrangements,
R. Kato, N. Hara, J. Yoshida*
Journal of Photochemistry & Photobiology, A, 2026, 471, 116660.
54. Triplet-triplet annihilation up-conversion of cationic iridium(III) complex solubilized by organically-modified hectorite in a green solvent,
A. Yamagishi, K. Takimoto, R. Ito, J. Yoshida, H. Sato
Appl. Clay Sci., 2025, 272, 107828. DOI
53. Racemic Assembly of Octahedral Metallomesogens via Δ-Λ Chiral Interaction: Detection of Novel VCD Signals in Quasi-Racemate,
H. Yoshida, K. Nishimoto, H. Yuge, T. Mandai, S. Yoshida, S. Sato, H. Sato, M. Hara,* G. Watanabe,* J. Yoshida*
Small, 2025, 21, 2500564.
A full-text, read-only version, DOI
本論文に関するプレスリリースはこちら。
52. Up-conversion of photon energy in colloidal clay systems,
A. Yamagishi, K. Tamura, S. Yamamoto, F. Sato, J. Yoshida, H. Sato
Appl. Clay Sci. 2024, 255, 107397. DOI
51. Microscopic vibrational circular dichroism on the forewings of a European hornet: heterogenous sequences of protein domains with different secondary structures,
H. Sato,* S. Inoué, J. Yoshida, I. Kawamura, J. Koshoubu, A. Yamagishi
Phys. Chem. Chem. Phys., 2024, 26, 17918-17922. DOI
50. Use of an ion-exchange adduct of synthetic hectorite and chiral copper(II) complex as a packing material for chromatographic resolution,
A. Yamagishi, K. Tamura, M. Kamon, J. Yoshida, H. Sato,
Appl. Clay. Sci., 2024, 251, 107290. DOI
49. The Missing Relationship between the Miscibility of Chiral Dopants and the Microscopic Dynamics of Solvent Liquid Crystals: A Molecular Dynamics Study,
G. Watanabe,* A. Yamazaki, J. Yoshida*
Symmetry, 2024, 15, 1092. DOI
48. The molecular arrangement of chiral metal complexes on the surface and interlayer space of smectite(総説)
J. Yoshida,
Clay Sci. 2023, 27, 1-6.
47. Vibrational Circular Dichroism Spectroscopy toward Intercalation Compounds of Sodium Montmorillonite: Evidences for Molecular Packing of Enantiopure Monovalent Ir(III) Complexes within Interlayer Spaces
H. Sato,* K. Takimoto, A. Yamagishi, J. Yoshida, M. Hara,
Appl. Clay Sci. 2022, 228, 106621.
46. Two-dimensional imaging of a model pharmaceutical dosage tablet using a scanning vibrational circular dichroism system,
H. Sato, S. Aisawa, H. Ida, M. Shimizu, K. Watanabe, J. Koshoubu, J. Yoshida, I. Kawamura,
Chem. Lett. 2022, 51, 205-207. DOI
45. Chiroptical switching behavior of heteroleptic ruthenium complexes bearing acetylacetonato and tropolonato ligands,
J. Yoshida*, K. Yamazaki, K. Tateyama, H. Yuge, H. Sato,
Dalton. Trans. 2021, 50, 14611-14617. DOI
44. Five-Coordinate Iridium(III) Complex with ΔΛ Chirality,
K. Takimoto, Y. Watanabe, J. Yoshida, H. Sato*,
Dalton. Trans. 2021, 50, 13256-13263. DOI
43. Mapping of Supramoleclar Chirality in Insect Wings by Microscopic Vibrational Circular Dichroism Spectroscopy: Heterogeneity in Protein Distribution,
H. Sato*, A. Yamagishi, M. Shimizu, K. Watanabe, J. Koshoubu, J. Yoshida, I. Kawamura
J. Phys. Chem. Lett. 2021 12, 7733-7737. DOI
42. Effects of Geometrical Isomerism on Emissive Behaviour of Heteroleptic Cyclometalated Ir(III) Complexes,
Y. Jinsenji, K. Takimoto, J. Yoshida, S. Mori, Y. Watanabe, H. Sato,*
Dalton Trans. 2021, 50, 8506-8511. DOI
41. Vibrational Circular Dichroism System Equipped with Quantum Cascade Laser for Microscopic Scanning,
H. Sato,*, M. Shimizu, K. Watanabe, J. Yoshida, I. Kawamura, J. Koshoubu*
Chem. Lett. 2021, 50, 1543-1545. DOI
40. Stereoselective Enhancement of VCD Signals for Intercalation Compounds of Sodium Montmorillonite and Chiral Metal Complexes,
H. Sato, K. Takimoto, J. Yoshida, A. Yamagishi,
Bull. Chem. Soc. Jpn. 2021, 94, 1731-1736. DOI BCSJ賞受賞
39. A Multidimensional Vibrational Circular Dichroism Apparatus Equipped with Quantum Cascade Laser and its Use for Investigating Some Peptide Systems Containing D-Amino Acids
H. Sato, M. Shimizu, K. Watanabe, J. Yoshida, I. Kawamura, J. Koshoubu,
Analytical Chemistry, 2021, 93, 2742-2748. DOI
38. Solid-State Vibrational Circular Dichroism as Applied for Heterogenous Asymmetric Catalysis: Copper(II) Complexes Immobilized in Montmorillonite,
H. Sato, K. Takimoto, J. Yoshida, Y. Watanabe, A. Yamagishi,
Chemistry Letters, 2021, 50, 896-898. DOI
37. Visualizing the helical stacking of octahedral metallomesogens with a chiral core,
G. Watanabe*, H. Watanabe, K. Suzuki, H. Yuge, S. Yoshida, T. Mandai, S. Yoneda, H. Sato, M. Hara*, J. Yoshida*,
Chemical Communications, 2020, 56, 12134-12137. DOI
36. Stabilization of oxidized ruthenium complexes by adsorption on clay minerals,
J. Yoshida*, K. Tateyama, Y. Kasahara, H. Yuge,
Applied Clay Science., 2020, 199, 105869. DOI
35. Vibrational circular dichroism towards asymmetric catalysis: chiral induction in substrates coordinated with copper(II) ions,
H. Sato*, K. Takimoto, J. Yoshida, A. Yamagishi,
Physical Chemistry Chemical Physics, 2020, 22, 24393-24398.
34. Hexagonal ordering of racemic Ni(II) complexes in the interlayer space of a clay mineral,
J. Yoshida*, K. Tateyama, H. Yuge, M. Hara*,
Chemical Communications., 2020, 56, 10670-10673. DOI
33. Tris(tropolonato) ruthenium as a hub for connecting p-conjugated systems,
J. Yoshida*, K. Tateyama, H. Yuge,
Dalton Transactions., 2020, 49, 2102-2111. (Selected as an Inside Cover) DOI
32. Competing forces in the self-assembly of amide-functionalized discotic mesogens,
J. Yoshida,* K. J. A. Bozek, J. R. Thompson, V. Williams,*
Soft Matter, 2019, 15, 10035-10044. DOI
31. Chiral tectonics toward square planar tetranuclear Pd(II) complexes: propagation of axial chirality through a long molecular axis,
Y. Goto, Y. Watanabe, A. Noboriguchi, J. Yoshida, S. Mori, H. Sato,
Dalton Transactions., 2019, 48, 10138-10144.
30. Crystal Structure and Structural Transformation of [(CH3)3NH]2[CuZn(CN)5],
K. Miyahara, J. Yoshida, H. Yuge, S. Nishikiori*,
Zeitschrift für anorganische und allgemeine Chemie, 2019, 645, 466–471.
29. Comprehensive Understanding of Host- and Guest-Dependent Helix Inversion in Chiral Nematic Liquid Crystals: Experimental and Molecular Dynamics Simulation Study,
J. Yoshida,* S. Tamura, K. Hoshino, H. Yuge, H. Sato, A. Yamazaki, S. Yoneda, G. Watanabe*,
Journal of Physical Chemistry B, 2018, 122, 10615-10626. (Selected as a Cover) DOI
28. Left- and right-circularly polarized light-sensing based on colored and mechano-responsive chiral nematic liquid crystals,
J. Yoshida,* S. Tamura, H. Yuge, G. Watanabe,*
Soft Matter, 2018, 14, 27-30. (Selected as an Inside Cover) DOI
27. “Colored” inorganic dopants for inducing liquid crystal chiral nematic and blue phases: monitoring of dopant-host interaction by Raman spectroscopy,
J. Yoshida,* S. Tamura, G. Watanabe, Y. Kasahara, H. Yuge,
Chemical Communications. 2017, 53, 5103-5106. (Selected as an Inside Cover) DOI
26. Long-range intramolecular electronic communication in a trinuclear ruthenium tropolonate complex,
J. Yoshida,* K. Kuwahara, K. Suzuki, H. Yuge,
Inorganic Chemistry. 2017, 56, 1846-1856. DOI
25. Improvement of molecular dynamics simulation applied to nematics doped with racemic metal complexes,
G. Watanabe,* A. Yamazaki, J. Yoshida,*
Molecular crystals and liquid crystals. 2017, 647, 235-243.
24. Enhancement of the helical twisting power of the ruthenium complex dopant for nematic liquid crystals by the introduction of an achiral bulky unit,
J. Yoshida,* K. Kuwahara, S. Tamura, H. Yuge, G. Watanabe, Molecular crystals and liquid crystals, 2017, 647, 179-185.
23. Poly[bis(trimethylammonium) [hexa-μ-cyanido-cadmium(II)dicopper(I)]]
S. Nishikiori,* J. Yoshida, H. Yuge, IUCrData, 2017, 2, x171771.
22. Molecular dynamics approach for predicting helical twisting powers of metal complex dopants in nematic solvents,
G. Watanabe,* J. Yoshida,* Journal of Physical Chemistry B, 2016, 120, 6858–6864. DOI
21. Effects of auxiliary ligands of Pd(II) dimers on induction of chiral nematic phases: chirality inversion and photo-responsive structural change,
K. Tamura, J. Yoshida, M. Taniguchi, T. Kitazawa, A. Yamagishi, H. Sato,
Dalton Transactions., 2015, 44, 3209-3215.
20. Bis(acetylacetonato)bis(pyrazolato)ruthenate(III) as a redox-active scorpionate ligand,
J. Yoshida,* K. Sugawara, H. Yuge, Dalton Transactions. 2014, 43, 16066-16073. DOI
19. A mixed-valence dinuclear ruthenium complex composed of Ru(II)-acetylide and Ru(III)-tropolonato units: acetylide-vinylidene interconversion in solution and solid state,
J. Yoshida,* K. Kuwahara, H. Yuge, Journal of Organometallic Chemistry, 2014, 756,19-26.
18. Dimeric tetrathiafulvalene linked to pseudo-ortho-[2.2]paracyclophane: chiral electrochromic properties and use as a chiral dopant,
K. Kobayakawa, M. Hasegawa, H. Sasaki, J. Endo, H. Matsuzawa, K. Sako, J. Yoshida and Y. Mazaki,
Chemistry An Asian Journal, 2014, 9, 2751–2754.
17. Tris(beta-diketonato) Ru(III) complexes as chiral dopants for nematic liquid crystals: the effect of the molecular structure on the helical twisting power,
J. Yoshida,* G. Watanabe, K. Kakizawa, Y. Kawabata, H. Yuge,
Inorganic Chemistry., 2013, 52, 11042-11050. DOI
16. Three polymorphic Cd(II) coordination polymers obtained from the solution and mechanochemical reactions of 3-cyanopentane-2,4-dione with Cd(II) acetate,
J. Yoshida,* S. Nishikiori, R. Kuroda, H. Yuge, Chemistry-A European Journal, 2013, 19, 3451-3457.
15. Bis(3-cyano-pentane-2,4-dionato) Co(II) as a linear building block for coordination polymers: combinations with two polypyridines,
J. Yoshida,* S. Nishikiori, H. Yuge, Journal of Coordination Chemistry, 2013, 66, 2191-2200.
14. A porous coordination polymer with a fourfold interpenetrating beta-hydroquinone framework constructed from bis(dibenzoylmethanato) cobalt(II) and tridentate quaterpyridine ligand,
J. Yoshida,* S. Nishikiori, H. Yuge, Journal of Coordination Chemistry, 2013, 66, 4344-4354.
13. A synthetic strategy for a new series of oxo-centered tricobalt complexes with mixed bridging ligands of acetate and pyrazolate anions,
J. Yoshida,* S. Kondo, H. Yuge, Dalton Transactions., 2013, 42, 2406-2413.
12. Structural transformation of pyridinium iodide proceeding in the solid state,
J. Yoshida,* J. Fuchiwaki, S. Nishikiori, CrystEngComm, 2011, 13, 4635-4640.
11. Formation of a chiral host with axially chiral cationic 1D coordination polymers composed of achiral building blocks and inclusion of anionic tris-chelate complexes in an unbalanced D/L ratio,
J. Yoshida, S. Nishikiori, R. Kuroda, Bulletin of the Chemical Society of Japan, 2009, 82, 1377-1385. DOI
10. Annealing assisted mechanochemical syntheses of transition-metal coordination compounds and co-crystal formation,
R. Kuroda, J. Yoshida, A. Nakamura, S. Nishikiori, CrystEngComm, 2009, 11, 427-432.
9. Formation of 1D and 3D coordination polymers in the solid state induced by mechanochemical and annealing treatments: Bis(3-cyano-pentane-2,4-dionato) metal complexes,
J. Yoshida, S. Nishikiori and R. Kuroda, Chemistry-A European Journal, 2008, 14, 10570-10578.
8. Induction and structural control of chiral nematic phases by the use of photoresponsive tris(b-diketonato) Co(III) and Ru(III) complexes,
J. Yoshida, H. Sato, N. Hoshino and A. Yamagishi, Journal of Physical Chemistry B, 2008, 112, 9677.
7. Construction of supramolecular complexes by use of planar bis(b-diketonato)cobalt complexes as building blocks,
J. Yoshida, S. Nishikiori and R. Kuroda, Chemistry Letters, 2007, 36, 678-679.
6. Linkage effects of chromium(III) acetylacetonato units on chiral induction of liquid crystal phases,
Y. Furuno, H. Sato, J. Yoshida, N. Hoshino, Y. Fukuda, and A. Yamagishi,
Journal of Physical Chemistry B, 2007, 111, 521-526.
5. Electron transfer through clay monolayer films fabricated by the Langmuir-Blodgett technique,
J. Yoshida, K. Saruwatari, J. Kameda, H. Sato, A. Yamagishi, L. Sun, M. Corriea, and G. Villemure,
Langmuir, 2006, 22, 9591-9597.
4. Photomodulation of a chiral nematic liquid crystal by the use of a photoresponsive Ruthenium(III) complex,
T. Mitsuoka, H. Sato, J. Yoshida, A. Yamagishi and Y. Einaga, Chemistry of Materials. 2006, 18, 3442-3447.
3. Rewinding of helical systems by use of the Cr(III) complex as a photoresponsive chiral dopant
T. Taniguchi, K. Monde, S. Nishimura, J. Yoshida, H. Sato, A. Yamagishi, Molecular crystals and liquid crystals, 2006, 460, 107-116.
2. A microscopic model for helical twisting power by the optical isomers of an octahedral metal complex,
H. Sato, A. Yamagishi, J. Yoshida, H. Nakano, N. Hoshino, Japanese Journal of Applied Physics Part 1, 2005, 44, 4067-4072.
1. On the parity in helical twisting power of Ru(III) 1,3-diketonates of C2 symmetry in nematic liquid crystals,
J. Yoshida, H. Sato, A. Yamagishi and N. Hoshino, Journal of the American Chemical Society, 2005, 127, 8453-8456.
7. 吉田 純、XXX
6. 吉田 純、液晶らせんを効率的に誘起するキラルドーパントの開発 : ルテニウム-クルクミン錯体の利用, 研究紀要(日本大学文理学部自然科学研究所), 2023, 201-206.
5. 吉田 純、粘土鉱物を舞台とするキラル金属錯体の2次元自己集合, セラミックス, 2022, 57, 103-107.
4. 吉田 純、「山岸研究室とキラル:低次元場としての液晶」 、「低次元系光機能材料研究会」ニュースレター 第17号 (2018年)
3. 吉田 純、弓削秀隆、「剛直な金属錯体を用いたキラル液晶場のコントロール」
化学工業(化学工業社), 4月号, 19-23頁(2018年)
2. 吉田 純、「八面体型金属錯体と液晶の組み合わせで目指す未来材料」
EKISHO (日本液晶学会誌), 2017, 21(4), 339-342. (2017年)
1. 吉田 純、渡辺豪、佐藤久子、「嵩高い金属錯体を用いたキラル液晶の構造研究」
EKISHO (日本液晶学会誌), 2017, 21(2), 105-112. (2017年)