Faculty: Profs. Alina Alexeenko and Steve Heister
Laboratory Manager: Dr. Anthony Cofer Graduate Students: Andrew Strongrich, Kate Fowee and Gayathri Shivkumar
Chamber A
The centerpiece of the high vacuum facility is the large vacuum chamber, constructed of cast aluminum. The chamber is 5 feet in diameter by 7 feet long (4.2 m3).
Chamber A is evacuated by two mechanical pumps
Chamber A at ASL was designed and built in academic year 2007-2008 by Prof. Ivana Hrbud and her students.
The new mechanical pump Oerlikon DK200/WAU 2001 was installed in 2013.
Chamber A is evacuated to a pressure of 1 Pa (0.001% of atm) in less than 20 mins and to an ultimate pressure of about 1 mPa (100,000,000 times less than 1 atm) in about 1 hour.
Chamber A MicroNewton Thrust Stand
The microNewton thrust stand system is a torsional pendulum type incorporating an electrostatic fin assembly for calibration, top and bottom pivot bearings for motion control, and linear variable differential transformer for deflection measurement. The thrust stand is mounted in the large vacuum chamber as shown in Figure 2. It has been used for thrust measurements of small cold gas microthrusters and force measurements of the Knudsen force effect. The electrostatic fin assembly produces forces, with repeatable within 3.6% at 9 microNewtons and less than 0.5% at 764 microNewtons.
Micronewton Thrust Stand was built in 2011 by Tony Cofer based on a design by Dr. Andrew Ketsdever and his colleagues at UCCS.
Chamber B
The acrylic chamber is 1 foot diameter by 1 foot tall and evacuated by an Alcatel 2008A two-stage rotary vane pump (150 ft3/min) which has reached a minimum pressure of 5 milliTorr. It has been used in radiometer experiments and for medium vacuum testing of components prior to use in the large chamber.
Feedthroughs provide access for power, gas, and thermocouples within the chamber.
The chamber was designed and build by Di Huang and Dr. Anthony Cofer as part of an undergraduate research project.
Chamber C
The stainless steel benchtop vacuum chamber has an internal volume of 8.3 in3, providing in-situ micrometrology in vacuum for MEMS devices. The system is driven by an Inest-Iwata dry scroll pump, supporting ultimate pressures in an ultra-clean environment of ~10 mTorr. Equipped with pressure and temperature sensors and various electrical and gas feedthroughs. The chamber lid has a central viewport that supports windows needed for optical, infrared, and confocal microscopy under controlled vacuum environment.
The chamber was designed and built in 2014 by Alix Crandell and Drew Strongrich as part of an undergraduate research project supported by NSF.
List of Available Equipment at the High Vacuum Laboratory:
Former Undergraduate Interns: Di Huang, Kaizad Raimalwala, Bill O'Neill, Sagar Unadkat, Mike King, Andrew Cox, Drew Strongrich, Alix Crandell, Hani Kim, Dongju Lee, Kate Fowee, Nolan John, Lev Zemlyanov
Publications and Presentations from High Vacuum Facility: