Common name: Bewilderingly ginormous salad number (may or may not be capitalized)
Abbreviation: BGSN or B.G.S.N.
Full name: "The fundamentally great star of ginormous cell number that consisting of series of notations made out of mainly Graham, googol, googolplex, tetration, pentation numbers with so many fundamental sequences within Bird's array notation and Extensible-E system within an unusually large number of well-defined googolisms, it's so delicious volcanic dimension of nightmare"
It consists of 42 steps (here the numbers starting with a dollar sign ($) stands for the defined googolism with that step number):
E4###4#64 (an approximation of Fish number 1, comparable to thrangol = E100###100#100 = E100###100##2)
X^^{{$1, {$1, $1, $1}, 1, 1, 65}, 1, 1, zootzootplex} & 3^^^^3 (grahal) where X^^{m} & n stands for a tetrational array of the number only.
E4####64 (an approximation of Fish number 2)
E[$2]420#^#69 = E[$2]420####...####420 with 69 consecutive #'s
{googolplex, googolplex-1, googolplex-2, ..., 4, 3, 2 (1) googolplex-1, googolplex-2, googolplex-3, ..., 4, 3, 2 (1) ... (1) 5, 4, 3, 2 (1) 4, 3, 2 (1) 3, 2 (1) 2}, using decrement pattern of the planar arrays in BEAF
{142857, 1337 (gigangol) 142857, 1337 (gigangol-1) 142857, 1337 (gigangol-2) ... (3) 142857, 1337 (2) 142857, 1337 (1) 142857, 1337}, where gigangol = E100#100#100#100, using Hyper-E notation
E[69420]($5)(#^^#)^^#($6) = E[69420]($5)(#^^#)^(#^^#)^...^(#^^#)^(#^^#)($5) with $6 #^^#'s
Multillion![versillion, supillion, gaxillion, glocillion, betillion, solillion, jovillion, fermillion, lunillion, astillion, gijillion, mejillion, kalillion], using Hollom's Hyperfactorial array notation
{BOX_M~, graatagold, 142857, 1337, 1, 1, tritet Jr.} where graatagold = E100##100#100, and tritet Jr. = {4, 4, 2} = 4^^4
{Graham's number,3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5 (355,113)(22,7) 2} using BEAF
{$5-$4-$3,{{$6,$7,1,1,2},$8,1,1,$9},1,1,1,...,1,1,1,googol (1,3,3,7) iteral} where iteral = {10,10 (1) 2} = {10,10,10,10,10,10,10,10,10,10}, and with $10 string of 1s entries
E100{#,#,1,2}godgathor where godgathor = E100#^#^#100
{$11, $11, 1, 1, 1, 2 (2 (7) 1 (8) 2 (8) 1 (8) 2 (8) 4 (5) 9, 4 (5) 2 (3) 5) 1, 1, 1, {$12}}
E100#^#^#^#$13 = E100#^#^####...####100 with $13 consecutive #'s
f_(ε(ε(ε(...ε(ε(ε(ζ(googolgong)+1)))))))(Fish number 3) where googolgong = 10^100,000, and there are gotrigahlah = E100#^#100#^#100 epsilons, using fast-growing hierarchy
E3#1#4#1#5#9#2#6#5#3#5#8#9#7#9#3#2#3#8#4#6#2#6#4#3#3#8#3#2#7#9#5 using Hyper-E notation
E69420#^^^^#(($15)^2-{$16,$16+$15,1,4})
E[$17]($17)#{($16)^^^^($15)^^^($14)}#($13*$12*$11)
TREE($18)
SSCG($19)
SSCG(SSCG(SSCG(...SSCG(SSCG(SSCG($20 - $19 - $18)))))) where there are {googolplex, googolplex [1 [142857 \ 1337 \ 420 \ 69 \ 42 ¬ 2] 2] 2} SSCG's, using hierarchial hyper-nested Bird's array notation
E[3]3#^^^#3 = E[3]3#^^#^^#3 = E[3]3#^^#^#^#3 = E[3]3#^^#^###3
SCG($21 - $22)
E(Bird's number)#{#^^^#}#($23^^$21)
g_(ψ(ε(ε(ε(...ε(ε(ε(Ω(ω^ω^2)+1))))))))(2147483647) where there are gralgathor = E100#^#^##100 epsilons, using extended Buchholz's function, and g stands for the slow-growing hierarchy
{$25, $24 [1 [1 \_(2,7,1,8,2,8,1,8,2,8,4,5,9,0,4,5,2,3,5) 3] 2] 2} using hierarchial hyper-nested Bird's array notation
{#26, $26, 2, 1, 1, 1, 1, $23 ((1) 1) 2} using BEAF nested arrays
E142857(#^^^#>(#^##+#^#*#^#*##))^^^#1337
Σ($28) where Σ is the busy beaver function
Rayo^($27)($29)
Rayo^($30)($30)
Rayo_(Σ_(E100#^^#>#^^#100))(SSCG(3))
Rayo_MK($32 - $31)
E100(#^^#^^#)^^#^^#100
E100(#^^^#^^^#)^^^#^^^#($34)
E100(#^^^^#^^^^#)^^^^#^^^^#($35)
E100#{36}#($28)
Σ∞($37) using infinite time Turing machine
$38 - ($37)^^^^($37)
Rayo_(Σ1)(greegold) where greegold = E100##100#100#100
Σ∞($40 + the least transcendental integer)
Rayo_(ZFC+I0)($41)
That's an uncomputable salad number!