HAPPY NEW YEAR 2023! I am going to create numbers inspired by New Year's Day 2023!
Members: 108
New Year's E = E[2023]2023#^^#2023 in Extensible-E system
New Year's BEAF = 2023^^2023 & 2023 in BEAF tetrational arrays
New Year's BAN = {2023, 2023 [1 [1 ¬ 3] 2] 2} in Bird's array notation
Super New Year's BAN = {2023, 2023 [1 [2 \(1, 2) 2] 2] 2} in Bird's array notation
New Year's Arrows = 2023^[2023]2023 = 2023^^^^^...^^^^^2023 (2023 arrows) in up-arrow notation
New Year's Down = 2023v[2023]2023 = 2023vvvvv...vvvvv2023 (2023 down arrows) in down-arrow notation
New Year's Chain = 2023 →(2) 2023 in Peter Hurford's extended chained arrow notation
Super New Year's Chain = 2023 →(2023) 2023 in Peter Hurford's extended chained arrow notation
New Year's Ampersand = 2023[1] in Ampersand notation
Super New Year's Ampersand = 2023[&] in Ampersand notation
Mega New Year's Ampersand = 2023[&_2023] in Ampersand notation
New Year's Circle = Circle(2023) in Steinhaus-Moser notation
New Year's Moser = M(2023, 0, 1) = M(2023, 2023) in Steinhaus-Moser notation
Super New Year's Moser = M(2023, 0, 0, 1) = M(2023, 2023, 2023) in Steinhaus-Moser notation
Baby Madom's New Year Firework = 2023[1, 2]2023 = 2023[2023]2023 in DeepLineMadom's array notation (part 0 and part 1) = 2023^[2021]2023 = 2023^^^^^...^^^^^2023 (2021 arrows) in up-arrow notation
Madom's New Year Firework = 2023[1 {1 / 2} 2]2023 in DeepLineMadom's array notation (part 3)
Super Madom's New Year Firework = 2023[1 {1 // 2} 2]2023 in DeepLineMadom's array notation (part 5)
Mega Madom's New Year Firework = 2023[1 {1 \ 1, 2} 2]2023 in DeepLineMadom's array notation (part 7)
Meta Madom's New Year Firework = 2023[1 {1 \ 1 \ 2} 2]2023 in DeepLineMadom's array notation (part 8)
Omega Madom's New Year Firework = M(2023, 2023) in DeepLineMadom's M function (see part 8)
Small Graham's Firework = g2023 in Graham's function
Large Graham's Firework = [2023, 2023, 2023, 2023] in Graham array notation
Fireworkillion = z(2023, 2023) in Zillion notation (2023rd Tier 2023 -illion)
Ackermann's Firework = A(2023, 2023) in Ackermann function
Phenol Fireworks = 2023[0 {0 / 1} 1]2023 in Phenol notation
Baby Bashicu Finale = (0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n = 2023^2023 ~ 1.070707501339186485735906879443 * 10^6688
Frayed Bashicu Finale = (0)(1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Frayed Bashicu Finale = (0)(1)(2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Frayed Bashicu Finale = (0)(1)(2)(3)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Frayed Bashicu Finale = (0)(1)(2)(3)(4)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Tera Frayed Bashicu Finale = (0)(1)(2)(3)(4)(5)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Improved Bashicu Finale = (0,0)(1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Improved Bashicu Finale = (0,0)(1,1)(2,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Improved Bashicu Finale = (0,0)(1,1)(2,1)(3,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Improved Bashicu Finale = (0,0)(1,1)(2,1)(3,1)(4,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supi Improved Bashicu Finale = (0,0)(1,1)(2,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Meji Improved Bashicu Finale = (0,0)(1,1)(2,2)(3,3)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giji Improved Bashicu Finale = (0,0)(1,1)(2,2)(3,3)(4,4)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Powered Bashicu Finale = (0,0,0)(1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Powered Bashicu Finale = (0,0,0)(1,1,1)(1,1,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Powered Bashicu Finale = (0,0,0)(1,1,1)(1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Powered Bashicu Finale = (0,0,0)(1,1,1)(1,1,1)(1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supi Powered Bashicu Finale = (0,0,0)(1,1,1)(2,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Ultra Powered Bashicu Finale = (0,0,0)(1,1,1)(2,1,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Hyper Powered Bashicu Finale = (0,0,0)(1,1,1)(2,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Dark Powered Bashicu Finale = (0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Charged Bashicu Finale = (0,0,0)(1,1,1)(2,1,1)(3,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supercharged Bashicu Finale = (0,0,0)(1,1,1)(2,2,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Megacharged Bashicu Finale = (0,0,0)(1,1,1)(2,2,1)(3,3,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,1)(4,4,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,2)(4,4,2)(5,5,2)(6,6,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supi Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,3)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Meji Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,3)(4,4,4)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giji Reformed Bashicu Finale = (0,0,0)(1,1,1)(2,2,2)(3,3,3)(4,4,4)(5,5,5)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,0,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,2,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Tera Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,2,1)(3,3,3,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supi Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,2,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Meji Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,2,2)(3,3,3,3)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giji Blazing Bashicu Finale = (0,0,0,0)(1,1,1,1)(2,2,2,2)(3,3,3,3)(4,4,4,4)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Super Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)(2,2,0,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Mega Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)(2,2,2,0,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Giga Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)(2,2,2,2,0)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Supi Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)(2,2,2,2,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Meji Withered Bashicu Finale = (0,0,0,0,0)(1,1,1,1,1)(2,2,2,2,2)(3,3,3,3,3)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Ultra Withered Bashicu Finale = (0,0,0,0,0,0)(1,1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Hyper Withered Bashicu Finale = (0,0,0,0,0,0)(1,1,1,1,1,1)(2,2,2,2,2,2)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Meta Withered Bashicu Finale = (0,0,0,0,0,0,0)(1,1,1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Eta Withered Bashicu Finale = (0,0,0,0,0,0,0,0)(1,1,1,1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Omega Withered Bashicu Finale = (0,0,0,0,0,0,0,0,0)(1,1,1,1,1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Aleph Withered Bashicu Finale = (0,0,0,0,0,0,0,0,0,0)(1,1,1,1,1,1,1,1,1,1)[2023] in Bashicu Matrix System with respect to version 4, simulating n = n^n
Endless Bashicu Finale = (0,0,0,0,...,0,0,0,0)(1,1,1,1,...,1,1,1,1)[2023] (w/ 2023 0's and 1's each) in Bashicu Matrix System with respect to version 4, simulating n = n^n
Omega Finale FGH = f_{ω}(2023) in the fast-growing hierarchy (Wainer hierarchy)
Great Omega Finale FGH = f_{ω^2}(2023) in the fast-growing hierarchy (Wainer hierarchy)
Greater Omega Finale FGH = f_{ω^ω}(2023) in the fast-growing hierarchy (Wainer hierarchy)
Even Greater Omega Finale FGH = f_{ω^ω^ω}(2023) in the fast-growing hierarchy (Wainer hierarchy)
Epsilon Finale FGH = f_{ε0}(2023) in the fast-growing hierarchy (Wainer hierarchy / Veblen hierarchy)
Zeta Finale FGH = f_{ζ0}(2023) in the fast-growing hierarchy (Wainer hierarchy / Veblen hierarchy)
Gamma Finale FGH = f_{Γ0}(2023) in the fast-growing hierarchy (Wainer hierarchy / Veblen hierarchy)
Bachmann-Howard Finale FGH = f_{ψ0(Ω_2)}(2023) in the fast-growing hierarchy (extended Buchholz's hierarchy)
Buchholz Finale FGH = f_{ψ0(Ω_ω)}(2023) in the fast-growing hierarchy (extended Buchholz's hierarchy)
Takeuti-Feferman-Buchholz Finale FGH = f_{ψ0(Ω_{ω+1})}(2023) in the fast-growing hierarchy (extended Buchholz's hierarchy)
Greater Buchholz Finale FGH = f_{ψ0(Ω_{Ω})}(2023) in the fast-growing hierarchy (extended Buchholz's hierarchy)
Extended Buchholz Finale FGH = f_{ψ0(Λ)}(2023) in the fast-growing hierarchy (extended Buchholz's hierarchy, ψ0(Λ) stands for the countable limit of the extended Buchholz's function)
Omega Finale SGH = g_{ω}(2023) = 2023 in the slow-growing hierarchy (Wainer hierarchy)
Squared Omega Finale SGH = g_{ω^2}(2023) = 2023^2 = 4092529 in the slow-growing hierarchy (Wainer hierarchy)
Exponentiated Omega Finale SGH = g_{ω^ω}(2023) = 2023^2023 ~ 1.070707501339186485735906879443 * 10^6688 in the slow-growing hierarchy (Wainer hierarchy)
Double Exponentiated Omega Finale SGH = g_{ω^ω^ω}(2023) = 2023^2023^2023 ~ 10^(3.5397545910791663683598593079679 * 10^6688) in the slow-growing hierarchy (Wainer hierarchy)
Epsilon Finale SGH = g_{ε0}(2023) in the slow-growing hierarchy = 2023^^2023 (Wainer hierarchy / Veblen hierarchy)
Zeta Finale SGH = g_{ζ0}(2023) in the slow-growing hierarchy ~ 2023^^^2024 (Wainer hierarchy / Veblen hierarchy)
Eta Finale SGH = g_{η0}(2023) in the slow-growing hierarchy ~ 2023^^^^2024 (Wainer hierarchy / Veblen hierarchy)
Phi Omega Finale SGH = g_{φ(ω,0)}(2023) in the slow-growing hierarchy ~ 2023{2024}2024 (Wainer hierarchy / Veblen hierarchy)
Gamma Finale SGH = g_{Γ0}(2023) in the slow-growing hierarchy (Wainer hierarchy / Veblen hierarchy)
Small Veblen Finale SGH = g_{ψ0(Ω^Ω^ω)}(2023) in the slow-growing hierarchy (extended Buchholz's hierarchy)
Small Super Veblen Finale SGH = g_{ψ0(Ω^Ω^Ω^ω)}(2023) in the slow-growing hierarchy (extended Buchholz's hierarchy)
Bachmann-Howard Finale SGH = g_{ψ0(Ω_2)}(2023) in the slow-growing hierarchy (extended Buchholz's hierarchy)
Buchholz Finale SGH = g_{ψ0(Ω_ω)}(2023) in the slow-growing hierarchy (extended Buchholz's hierarchy)
Limiter Finale SAN = s(2023, 2023, 1, 1, 2) in strong array notation
Great Limiter Finale SAN = s(2023, 2023 {2} 2) in strong array notation
Mega Limiter Finale SAN = s(2023, 2023 {1, 2} 2) in strong array notation
Giga Limiter Finale SAN = s(2023, 2023 {1 {2} 2} 2) in strong array notation
Tera Limiter Finale SAN = s(2023, 2023 {1 {1, 2} 2} 2) in strong array notation
Omni Limiter Finale SAN = s(2023, 2023 {1 ` 2} 2) in strong array notation (EAN)