More than just a year after version 2 extended -illions, I made up a partial reform beyond Bowers' -illions, adjusting several tier 4 -illions, renewing tier 5 -illions into my diverged system, and introducing the full version of tiers 7 and beyond! Please note that the term "tier" is not capitalized.
Ha = Ha#1
Ha#0 = 1,000*a
b > 0: Ha#b = H(1,000^a)#(b-1)
Examples:
H34 = H34#1 = H(1,000^34)#0 = 1,000*1,000^34 = 10^105 = 1 quattourtrigintillion
H2,013#2 = H(1,000^2,013)#1 = 1,000^(1,000^2,013+1) = 10^(3*10^6,039+3) = 1 micrekillatrecillion
Illion Function can also be expressed in Hyper-E notation: Ha#b = 1,000*E[1,000]a#b (base 1,000 Hyper-E notation), and can be estimated approximately: 1,000^^(b+1) > Ha#b > 1,000^^b (for a < 333)
In this version, there are a few major changes here. The changes are explained below.
I changed some of the "tier 4 tens" roots to calque the hyper-celestial object-based names alongside the Latin numerals as follows:
[20] barrillion = 10^(3*10^(3*10^(3*10^60))+3) - from "barrel"
[21] barralillion = 10^(3*10^(3*10^(3*10^63))+3) - from "barrel" + kalillion (derived from kilo-)
[22] barrejillion = 10^(3*10^(3*10^(3*10^66))+3) - from "barrel" + mejillion (derived from mega-)
[23] barrijillion = 10^(3*10^(3*10^(3*10^69))+3) - from "barrel" + gijillion (derived from giga-)
[24] barrastillion = 10^(3*10^(3*10^(3*10^72))+3) - from "barrel" + astillion (from "asteroid")
[25] barrunillion = 10^(3*10^(3*10^(3*10^75))+3) - from "barrel" + lunillion (from "luna" (Moon))
[26] barrermillion = 10^(3*10^(3*10^(3*10^78))+3) - from "barrel" + fermillion (from "terra firma" (Earth))
[27] barrovillion = 10^(3*10^(3*10^(3*10^81))+3) - from "barrel" + jovillion (from "jova" (Jupiter))
[28] barrolillion = 10^(3*10^(3*10^(3*10^84))+3) - from "barrel" + solillion (from "sol" (Sun))
[29] barretillion = 10^(3*10^(3*10^(3*10^87))+3) - from "barrel" + betillion (from "Betelgeuse")
[30] gintarrillion = 10^(3*10^(3*10^(3*10^90))+3) - from gijillion + "triginta" (Latin for 30) + barrillion
[40] antarrillion = 10^(3*10^(3*10^(3*10^120))+3) - from astillion + "quadraginta" (Latin for 40) + barrillion
[50] luntarrillion = 10^(3*10^(3*10^(3*10^150))+3) - from lunillion + "quinquaginta" (Latin for 50) + barrillion
[60] festarrillion = 10^(3*10^(3*10^(3*10^180))+3) - from fermillion + "sexaginta" (Latin for 60) + barrillion
[70] joptarrillion = 10^(3*10^(3*10^(3*10^210))+3) - from jovillion + "septuaginta" (Latin for 70) + barrillion
[80] soctarrillion = 10^(3*10^(3*10^(3*10^240))+3) - from solillion + "octaginta" (Latin for 80) + barrillion
[90] bontarrillion = 10^(3*10^(3*10^(3*10^270))+3) - from betillion + "nonaginta" (Latin for 90) + barrillion
[100] cetillion = 10^(3*10^(3*10^(3*10^300))+3) - from "cetaverse"
[200] mecetillion = 10^(3*10^(3*10^(3*10^600))+3) - from mejillion + "ducenti" (Latin for 200) + cetillion
[300] gicetillion = 10^(3*10^(3*10^(3*10^900))+3) - from gijillion + "trecenti" (Latin for 300) + cetillion
[400] ascetillion = 10^(3*10^(3*10^(3*10^1,200))+3) - from astillion + "quadringenti" (Latin for 400) + cetillion
[500] lucetillion = 10^(3*10^(3*10^(3*10^1,500))+3) - from lunillion + "quingenti" (Latin for 500) + cetillion
[600] fescetillion = 10^(3*10^(3*10^(3*10^1,800))+3) - from fermillion + "sescenti" (Latin for 600) + cetillion
[700] jopcetillion = 10^(3*10^(3*10^(3*10^1,800))+3) - from jovillion + "septingenti" (Latin for 700) + cetillion
[800] soccetillion = 10^(3*10^(3*10^(3*10^1,800))+3) - from solillion + "octingenti" (Latin for 800) + cetillion
[900] bencetillion = 10^(3*10^(3*10^(3*10^1,800))+3) - from betillion + "nongenti" (Latin for 900) + cetillion
You can see that the first 29 names of tier 4 -illions are exactly the same as the CompactStar's names. From 30 onwards, the names starts to differentiate. When you make a closer look, these changes makes perfect sense.
Let's check out the table:
And here, I made a comprehensive table.
In these tables, there are no conflicts at all, thanks to the names calqued from the Latin numerals.
So, here are some fairly complex examples:
[42] antarrejillion = 10^(3*10^(3*10^(3*10^126))+3)
[147] cetantarrovillion = 10^(3*10^(3*10^(3*10^441))+3)
[315] gicemetillion = 10^(3*10^(3*10^(3*10^945))+3)
[584] lucesoctarrastillion = 10^(3*10^(3*10^(3*10^1,752))+3)
[999*999] nonecronencebontarretillion or nonecxenencebontarretillion = 10^(3*10^(3*10^(2,997*10^2,997))+3) = 10^(3*10^(3*10^(2.997*10^3,000))+3)
And now we organize all the latinos of tier 4 -illions. Here is the reasonably extensive list!
[15] metillion / pyrillion = 10^(3*10^(3*10^(3*10^45))+3) [co-official]
[15*] dettillion / zopyrillion = 10^(3*10^(3*10^(6*10^45))+3) [co-official]
[15*] zeettillion / zopyrillion = 10^(3*10^(3*10^(2.1*10^46))+3) [co-official]
[15*] dakettillion / dakopyrillion = 10^(3*10^(3*10^(3*10^46))+3) [co-official]
[15*] hotettillion / hotopyrillion = 10^(3*10^(3*10^(3*10^46))+3) [co-official]
[16] xevillion = 10^(3*10^(3*10^(3*10^48))+3)
[16*] dakevillion = 10^(3*10^(3*10^(3*10^49))+3)
[16*] hotevillion = 10^(3*10^(3*10^(3*10^50))+3)
[17] hypillion = 10^(3*10^(3*10^(3*10^51))+3)
[17*] dakohypillion = 10^(3*10^(3*10^(3*10^52))+3)
[17*] hotohypillion = 10^(3*10^(3*10^(3*10^53))+3)
[18] omnillion / omnivillion = 10^(3*10^(3*10^(3*10^54))+3)
[18*] dakomnillion / dakomnivillion = 10^(3*10^(3*10^(3*10^55))+3)
[18*] hotomnillion / hotomnivillion = 10^(3*10^(3*10^(3*10^56))+3)
[19] outillion = 10^(3*10^(3*10^(3*10^57))+3)
[19*] dakoutillion = 10^(3*10^(3*10^(3*10^59))+3)
[19*] hotoutillion = 10^(3*10^(3*10^(3*10^59))+3)
[20] barrillion = 10^(3*10^(3*10^(3*10^60))+3)
[20*] dakarrillion = 10^(3*10^(3*10^(3*10^61))+3)
[20*] hotarrillion = 10^(3*10^(3*10^(3*10^62))+3)
[21] barralillion = 10^(3*10^(3*10^(3*10^63))+3)
[22] barrejillion = 10^(3*10^(3*10^(3*10^66))+3)
[23] barrojillion = 10^(3*10^(3*10^(3*10^69))+3)
[24] barrastillion = 10^(3*10^(3*10^(3*10^72))+3)
[25] barrunillion = 10^(3*10^(3*10^(3*10^75))+3)
[26] barrermillion = 10^(3*10^(3*10^(3*10^78))+3)
[27] barrovillion = 10^(3*10^(3*10^(3*10^81))+3)
[28] barrolillion = 10^(3*10^(3*10^(3*10^84))+3)
[29] barretillion = 10^(3*10^(3*10^(3*10^87))+3)
[30] gintarrillion = 10^(3*10^(3*10^(3*10^90))+3)
[31] gintarralillion = 10^(3*10^(3*10^(3*10^93))+3)
[32] gintarrejillion = 10^(3*10^(3*10^(3*10^96))+3)
[33] gintarrijillion = 10^(3*10^(3*10^(3*10^99))+3)
[34] gintarrastillion = 10^(3*10^(3*10^(3*10^102))+3)
[35] gintarrunillion = 10^(3*10^(3*10^(3*10^105))+3)
[36] gintarrermillion = 10^(3*10^(3*10^(3*10^108))+3)
[37] gintarrovillion = 10^(3*10^(3*10^(3*10^111))+3)
[38] gintarrolillion = 10^(3*10^(3*10^(3*10^114))+3)
[39] gintarretillion = 10^(3*10^(3*10^(3*10^117))+3)
[40] antarrillion = 10^(3*10^(3*10^(3*10^120))+3)
[41] antarralillion = 10^(3*10^(3*10^(3*10^123))+3)
[42] antarrejillion = 10^(3*10^(3*10^(3*10^126))+3)
[45] antarrunillion = 10^(3*10^(3*10^(3*10^135))+3)
[50] luntarrillion = 10^(3*10^(3*10^(3*10^150))+3)
[55] luntarrunillion = 10^(3*10^(3*10^(3*10^165))+3)
[60] festarrillion = 10^(3*10^(3*10^(3*10^180))+3)
[65] festarrunillion = 10^(3*10^(3*10^(3*10^195))+3)
[70] joptarrillion = 10^(3*10^(3*10^(3*10^210))+3)
[80] soctarrillion = 10^(3*10^(3*10^(3*10^240))+3)
[90] bontarrillion = 10^(3*10^(3*10^(3*10^270))+3)
[99] bontarretillion = 10^(3*10^(3*10^(3*10^297))+3)
[100] cetillion = 10^(3*10^(3*10^(3*10^300))+3)
[101] cekalillion = 10^(3*10^(3*10^(3*10^303))+3)
[102] cemejillion = 10^(3*10^(3*10^(3*10^306))+3)
[103] cegijillion = 10^(3*10^(3*10^(3*10^309))+3)
[104] cetastillion = 10^(3*10^(3*10^(3*10^312))+3)
[105] celunillion = 10^(3*10^(3*10^(3*10^315))+3)
[106] cefermillion = 10^(3*10^(3*10^(3*10^318))+3)
[107] cejovillion = 10^(3*10^(3*10^(3*10^321))+3)
[108] cesolillion = 10^(3*10^(3*10^(3*10^324))+3)
[109] cebetillion = 10^(3*10^(3*10^(3*10^327))+3)
[110] ceglocillion = 10^(3*10^(3*10^(3*10^330))+3)
[111] cegaxillion = 10^(3*10^(3*10^(3*10^333))+3)
[112] cesupillion = 10^(3*10^(3*10^(3*10^336))+3)
[113] ceversillion = 10^(3*10^(3*10^(3*10^339))+3)
[114] cemultillion = 10^(3*10^(3*10^(3*10^342))+3)
[115] cemetillion = 10^(3*10^(3*10^(3*10^345))+3)
[116] cexevillion = 10^(3*10^(3*10^(3*10^348))+3)
[117] cetypillion = 10^(3*10^(3*10^(3*10^351))+3)
[118] cetomnillion / cetomnivillion = 10^(3*10^(3*10^(3*10^354))+3)
[119] cetoutillion = 10^(3*10^(3*10^(3*10^357))+3)
[120] cebarrillion = 10^(3*10^(3*10^(3*10^360))+3)
[125] cebarrunillion = 10^(3*10^(3*10^(3*10^375))+3)
[130] cegintarrillion = 10^(3*10^(3*10^(3*10^390))+3)
[135] cegintarrunillion = 10^(3*10^(3*10^(3*10^405))+3)
[140] cetantarrillion = 10^(3*10^(3*10^(3*10^420))+3)
[150] celuntarrillion = 10^(3*10^(3*10^(3*10^450))+3)
[160] cefestarrillion = 10^(3*10^(3*10^(3*10^480))+3)
[170] cejoptarrillion = 10^(3*10^(3*10^(3*10^510))+3)
[180] cesoctarrillion = 10^(3*10^(3*10^(3*10^540))+3)
[190] cebontarrillion = 10^(3*10^(3*10^(3*10^570))+3)
[200] mecetillion = 10^(3*10^(3*10^(3*10^600))+3)
[201] mecekalillion = 10^(3*10^(3*10^(3*10^603))+3)
[202] mecemejillion = 10^(3*10^(3*10^(3*10^606))+3)
[205] mecelunillion = 10^(3*10^(3*10^(3*10^615))+3)
[210] meceglocillion = 10^(3*10^(3*10^(3*10^630))+3)
[215] mecemetillion = 10^(3*10^(3*10^(3*10^645))+3)
[220] mecebarrillion = 10^(3*10^(3*10^(3*10^660))+3)
[230] mecegintarrillion = 10^(3*10^(3*10^(3*10^690))+3)
[240] mecetantarrillion = 10^(3*10^(3*10^(3*10^720))+3)
[250] meceluntarrillion = 10^(3*10^(3*10^(3*10^750))+3)
[260] mecefestarrillion = 10^(3*10^(3*10^(3*10^780))+3)
[270] mecejoptarrillion = 10^(3*10^(3*10^(3*10^810))+3)
[280] mecesoctarrillion = 10^(3*10^(3*10^(3*10^840))+3)
[290] mecebontarrillion = 10^(3*10^(3*10^(3*10^870))+3)
[300] gicetillion = 10^(3*10^(3*10^(3*10^900))+3)
[350] giceluntarrillion = 10^(3*10^(3*10^(3*10^1,050))+3)
[400] ascetillion = 10^(3*10^(3*10^(3*10^1,200))+3)
[450] asceluntarrillion = 10^(3*10^(3*10^(3*10^1,350))+3)
[500] lucetillion = 10^(3*10^(3*10^(3*10^1,500))+3)
[600] fescetillion = 10^(3*10^(3*10^(3*10^1,800))+3)
[700] jopcetillion = 10^(3*10^(3*10^(3*10^2,100))+3)
[800] soccetillion = 10^(3*10^(3*10^(3*10^2,400))+3)
[900] bencetillion = 10^(3*10^(3*10^(3*10^2,700))+3)
[990] bencebontarrillion = 10^(3*10^(3*10^(3*10^2,970))+3)
[999] bencebontarretillion = 10^(3*10^(3*10^(3*10^2,997))+3)
[999*] nonecronencebontarretillion / nonecronencebontarretillion = 10^(3*10^(3*10^(2.997*10^3,000))+3)
Table overview (in picture):
I also made one alternative system that is far more hilarious than my preferred one, as it is combined with the niche possibilities 2, 4, and 5 of the extended tier 4 -illion systems mentioned by Aarex here. Here is the table:
Using the examples with the same values as the formers above.
[42] asixejillion = 10^(3*10^(3*10^(3*10^126))+3)
[147] horasixovillion = 10^(3*10^(3*10^(3*10^441))+3)
[315] gormetillion = 10^(3*10^(3*10^(3*10^945))+3)
[584] lorsolixastillion = 10^(3*10^(3*10^(3*10^1,752))+3)
[999*999] nonecronoborbetixetillion or nonecxenoborbetixetillion = 10^(3*10^(3*10^(2,997*10^2,997))+3) = 10^(3*10^(3*10^(2.997*10^3,000))+3)
And finally, the limit of the extended tier 4 -illion (tier 3 separator limit) is:
nonecronencebontarreti-nonecronencebontarroli-nonecronencebontarrovi-nonecronencebontarrermi-nonecronencebontarruni-
nonecronencebontarrasti-nonecronencebontarriji-nonecronencebontarreji-nonecronencebontarrali-nonecronencebontarri-
nonecronencesoctarreti-nonecronencesoctarroli-nonecronencesoctarrovi-nonecronencesoctarrermi-nonecronencesoctarruni-
nonecronencesoctarrasti-nonecronencesoctarriji-nonecronencesoctarreji-nonecronencesoctarrali-nonecronencesoctarri-
...
nonecronouti-nonecronomni-nonecronohypi-nonecronevi-nonecronetti-
nonecronulti-nonecronersi-nonecronupi-nonecronaxi-nonecronoci-
nonecroneeti-nonecronoli-nonecronovi-nonecronermi-nonecronuni-
nonecronasti-nonecroniji-nonecroneji-nonecronalnonecronillion
or alternatively, by inserting "nonecxen" in place of "nonecron".
And I made up a completely diverged system of tier 5 -illions, thanks to my creativity. This tier is not a hoax-based names either, it's much more appealing than both Saibian's and Cookiefonster's own hoaxordinary names. It's pretty much calqued from Romance-language cardinal and ordinal numerals to avoid conflating with the "real" Latin-based tier 1 -illions
The pivotal first of the tier 5 -illion is:
primillion = 10^(3*10^(3*10^(3*10^3,000))+3) = H3,000#4 = H1#5
Note: This tier always use unmodified Sbiis Saibian's system that use the "i" connection to add tier 5 root or root of higher tiers with tier 3.
For example, primikillillion = 10^(3*10^(3*10^(3*10^3,000+3))+3)
= (10^3,000+1)st tier 3 -illion
Secondly, any tier 3 multiplicatives always add the "o" before tier 5 or higher tier roots.
For example, dakoprimillion = 10^(3*10^(3*10^(3*10^3,001))+3)
= (10^3,001)th tier 3 -illion
But I am not done yet. I need some tier 4 additive and multiplicative roots to create the critical combinations between 1st and 2nd tier 5. Here, we got the "e" vowel as either an additive or a multiplicative, instead of the "i" vowel as an additive and the "o" vowel as a multiplicative (formerly used "i" for tier-4 multiplicative due to the ambiguity). For example:
primekalillion = 10^(3*10^(3*10^(3*10^3,003))+3) = 1,001st tier 4 -illion
luneprimillion = 10^(3*10^(3*10^(3*10^15,000))+3) = 5,000th tier 4 -illion
And the second one of the tier 5 is:
secillion = 10^(3*10^(3*10^(3*10^3,000,000))+3) = H3,000,000#4 = H2#5
There is one more important change to consider. The "a-" suffix is now ambiguous from tier 5 onwards. For tier 2 additive form to tiers 5+, use "ae-" instead of "a-" (be wary that hendecaplodae- and hendecaplodicae- are completely different connections). This is believed to be the inflections in the Spanish language, which uses a lot of A's. So that "trisya-secadisillion" (introduced later in tier 6) is no longer ambiguous. And that's mean trisya-secadisillion is equal to 10^(3*10^(3*10^(3*10^3^(3*10^3,006,000,000)))+3), while trisya-secaedisillion is equal to 10^(3*10^(3*10^(3*10^3^(3*10^3,000,000,000))+3*10^(3*10^3^(3*10^3,000,000))))+3).
And finally, let's make a compact list of my tier 5 -illions as a basis of creating the tier's own roots
[1] primillion = 10^(3*10^(3*10^(3*10^3,000))+3) = H1,000#4 = H1#5 - from Latin "primus"
[1+] primekalillion = 10^(3*10^(3*10^(3*10^3,003))+3) = H1,001#4
[1+] primemejillion = 10^(3*10^(3*10^(3*10^3,006))+3) = H1,002#4
[1+] primegijillion = 10^(3*10^(3*10^(3*10^3,009))+3) = H1,003#4
[1+] primeastillion = 10^(3*10^(3*10^(3*10^3,012))+3) = H1,004#4
[1+] primelunillion = 10^(3*10^(3*10^(3*10^3,015))+3) = H1,005#4
[1+] primeglocillion = 10^(3*10^(3*10^(3*10^3,030))+3) = H1,010#4
[1+] primebarrillion = 10^(3*10^(3*10^(3*10^3,060))+3) = H1,020#4
[1+] primegintarrillion = 10^(3*10^(3*10^(3*10^3,090))+3) = H1,030#4
[1+] primeantarrillion = 10^(3*10^(3*10^(3*10^3,120))+3) = H1,040#4
[1+] primeluntarrillion = 10^(3*10^(3*10^(3*10^3,150))+3) = H1,050#4
[1+] primecetillion = 10^(3*10^(3*10^(3*10^3,300))+3) = H1,100#4
[1+] primemecetillion = 10^(3*10^(3*10^(3*10^3,600))+3) = H1,200#4
[1+] primegicetillion = 10^(3*10^(3*10^(3*10^3,900))+3) = H1,300#4
[1+] primeascetillion = 10^(3*10^(3*10^(3*10^4,200))+3) = H1,400#4
[1+] primelucetillion = 10^(3*10^(3*10^(3*10^4,500))+3) = H1,500#4
[1+] primefescetillion = 10^(3*10^(3*10^(3*10^4,800))+3) = H1,600#4
[1+] primejopcetillion = 10^(3*10^(3*10^(3*10^5,100))+3) = H1,700#4
[1+] primesoccetillion = 10^(3*10^(3*10^(3*10^5,400))+3) = H1,800#4
[1+] primebencetillion = 10^(3*10^(3*10^(3*10^5,700))+3) = H1,900#4
[1*] mejeprimillion = 10^(3*10^(3*10^(3*10^6,000))+3) = H2,000#4
[1*+] mejeprimekalillion = 10^(3*10^(3*10^(3*10^6,003))+3) = H2,001#4
[1*+] mejeprimeglocillion = 10^(3*10^(3*10^(3*10^6,030))+3) = H2,010#4
[1*+] mejeprimecetillion = 10^(3*10^(3*10^(3*10^6,300))+3) = H2,100#4
[1*] gijeprimillion = 10^(3*10^(3*10^(3*10^9,000))+3) = H3,000#4
[1*] asteprimillion = 10^(3*10^(3*10^(3*10^12,000))+3) = H4,000#4
[1*] luneprimillion = 10^(3*10^(3*10^(3*10^15,000))+3) = H5,000#4
[1*] fermeprimillion = 10^(3*10^(3*10^(3*10^18,000))+3) = H6,000#4
[1*] joveprimillion = 10^(3*10^(3*10^(3*10^21,000))+3) = H7,000#4
[1*] soleprimillion = 10^(3*10^(3*10^(3*10^24,000))+3) = H8,000#4
[1*] beteprimillion = 10^(3*10^(3*10^(3*10^27,000))+3) = H9,000#4
[1*] gloceprimillion = 10^(3*10^(3*10^(3*10^30,000))+3) = H10,000#4
[1*] barreprimillion = 10^(3*10^(3*10^(3*10^60,000))+3) = H20,000#4
[1*] ceteprimillion = 10^(3*10^(3*10^(3*10^300,000))+3) = H100,000#4
[2] secillion = 10^(3*10^(3*10^(3*10^3,000,000))+3) = H1,000,000#4 = H2#5 - from Latin "secundus" - the "c" in "sec" is pronounced with a "k" sound (hard C)
[2*] glocesecillion = 10^(3*10^(3*10^(3*10^30,000,000))+3) = H10,000,000#4
[2*] cetesecillion = 10^(3*10^(3*10^(3*10^300,000,000))+3) = H100,000,000#4
[3] tertillion = 10^(3*10^(3*10^(3*10^3,000,000,000))+3) = H1,000,000,000#4 = H3#5 - from Latin "tertius"
[3*] glocetertillion = 10^(3*10^(3*10^(3*10^3,000,000,000))+3) = H1,000,000,000#4 = H3#5
[3*] cetetertillion = 10^(3*10^(3*10^(3*10^3,000,000,000))+3) = H1,000,000,000#4 = H3#5
[4] quartillion = 10^(3*10^(3*10^(3*10^3,000,000,000,000))+3) = H1,000,000,000,000#4 = H4#5 - from Latin "quartus"
[5] cinquillion = 10^(3*10^(3*10^(3*10^(3*10^15)))+3) = H5#5 - from French "cinq"
[6] sixillion = 10^(3*10^(3*10^(3*10^(3*10^18)))+3) = H6#5 - from French "six"
[7] seitillion = 10^(3*10^(3*10^(3*10^(3*10^21)))+3) = H7#5 - from Spanish "siete"
[8] ottillion = 10^(3*10^(3*10^(3*10^(3*10^24)))+3) = H8#5 - from Italian "otto"
[9] naivillion = 10^(3*10^(3*10^(3*10^(3*10^27)))+3) = H9#5 - from Latin "novem"
[10] deizillion = 10^(3*10^(3*10^(3*10^(3*10^30)))+3) = H10#5 - from Latin "decem"
[11] onzillion = 10^(3*10^(3*10^(3*10^(3*10^33)))+3) = H11#5 - from French "onze"
[12] douzillion = 10^(3*10^(3*10^(3*10^(3*10^36)))+3) = H12#5 - from French "douze"
[13] trezillion = 10^(3*10^(3*10^(3*10^(3*10^39)))+3) = H13#5 - from French "treize" (*formerly "trizillion")
[14] quatorzillion = 10^(3*10^(3*10^(3*10^(3*10^42)))+3) = H14#5 - from French "quatorze"
[15] quinzillion = 10^(3*10^(3*10^(3*10^(3*10^45)))+3) = H15#5 - from French "quinze"
[16] sezillion = 10^(3*10^(3*10^(3*10^(3*10^48)))+3) = H16#5 - from French "seize"
[17] seitezillion = 10^(3*10^(3*10^(3*10^(3*10^51)))+3) = H17#5 - "seit" + "deiz"
[18] ottezillion = 10^(3*10^(3*10^(3*10^(3*10^54)))+3) = H18#5 - "ott" + "deiz"
[19] naivezillion = 10^(3*10^(3*10^(3*10^(3*10^57)))+3) = H19#5 - "naiv" + "deiz"
[20] vintillion = 10^(3*10^(3*10^(3*10^(3*10^60)))+3) = H20#5 - from Latin "viginti"
[21] vinceprimillion = 10^(3*10^(3*10^(3*10^(3*10^63)))+3) = H21#5 - "t-" becomes "ce-" to avoid conflict with tier 4 additive modifier
[22] vincesecillion = 10^(3*10^(3*10^(3*10^(3*10^66)))+3) = H22#5
[23] vincetertillion = 10^(3*10^(3*10^(3*10^(3*10^69)))+3) = H23#5
[24] vincequartillion = 10^(3*10^(3*10^(3*10^(3*10^72)))+3) = H24#5
[25] vincecinquillion = 10^(3*10^(3*10^(3*10^(3*10^75)))+3) = H25#5
[26] vincesixillion = 10^(3*10^(3*10^(3*10^(3*10^78)))+3) = H26#5
[27] vinceseitillion = 10^(3*10^(3*10^(3*10^(3*10^81)))+3) = H27#5
[28] vinceottillion = 10^(3*10^(3*10^(3*10^(3*10^84)))+3) = H28#5
[29] vincenaivillion = 10^(3*10^(3*10^(3*10^(3*10^87)))+3) = H29#5
[30] treintillion = 10^(3*10^(3*10^(3*10^(3*10^90)))+3) = H30#5 - from French "trente"
[40] quarantillion = 10^(3*10^(3*10^(3*10^(3*10^120)))+3) = H40#5 - from French "quarante"
[50] cinquantillion = 10^(3*10^(3*10^(3*10^(3*10^150)))+3) = H50#5 - from French "cinquante"
[60] sexantillion = 10^(3*10^(3*10^(3*10^(3*10^180)))+3) = H60#5 - from French "soixante" (*formerly "sexantillion")
[70] seitentillion = 10^(3*10^(3*10^(3*10^(3*10^210)))+3) = H70#5 - "seit" + "-ent" (following "sixent")
[80] ottentillion = 10^(3*10^(3*10^(3*10^(3*10^240)))+3) = H80#5 - "ott" + "-ent" (following "sixent")
[90] naiventillion = 10^(3*10^(3*10^(3*10^(3*10^270)))+3) = H90#5 - "naiv" + "-ent" (following "sixent")
[99] naivencenaivillion = 10^(3*10^(3*10^(3*10^(3*10^297)))+3) = H99#5
[100] cientillion = 10^(3*10^(3*10^(3*10^(3*10^300)))+3) = H100#5 - from Latin "centum", modified to avoid conflict with tier 1 "centillion"
[101] cienceprimillion = 10^(3*10^(3*10^(3*10^(3*10^303)))+3) = H101#5
[102] ciencesecillion = 10^(3*10^(3*10^(3*10^(3*10^306)))+3) = H102#5
[103] ciencetertillion = 10^(3*10^(3*10^(3*10^(3*10^309)))+3) = H103#5
[104] ciencequartillion = 10^(3*10^(3*10^(3*10^(3*10^312)))+3) = H104#5
[105] ciencecinquillion = 10^(3*10^(3*10^(3*10^(3*10^315)))+3) = H105#5
[110] ciencedeizillion = 10^(3*10^(3*10^(3*10^(3*10^330)))+3) = H110#5
[111] cienceonzillion = 10^(3*10^(3*10^(3*10^(3*10^333)))+3) = H111#5
[112] ciencedouzillion = 10^(3*10^(3*10^(3*10^(3*10^336)))+3) = H112#5
[120] ciencedeizillion = 10^(3*10^(3*10^(3*10^(3*10^360)))+3) = H120#5
[121] ciencevintillion = 10^(3*10^(3*10^(3*10^(3*10^363)))+3) = H121#5
[122] ciencevinceprimillion = 10^(3*10^(3*10^(3*10^(3*10^366)))+3) = H122#5
[130] ciencetreintillion = 10^(3*10^(3*10^(3*10^(3*10^390)))+3) = H130#5
[140] ciencequarantillion = 10^(3*10^(3*10^(3*10^(3*10^420)))+3) = H140#5
[150] ciencecinquantillion = 10^(3*10^(3*10^(3*10^(3*10^450)))+3) = H150#5
[160] ciencesexantillion = 10^(3*10^(3*10^(3*10^(3*10^480)))+3) = H160#5 (*formerly "ciencesexantillion")
[170] cienceseitentillion = 10^(3*10^(3*10^(3*10^(3*10^510)))+3) = H170#5
[180] cienceottentillion = 10^(3*10^(3*10^(3*10^(3*10^540)))+3) = H180#5
[190] ciencenaiventillion = 10^(3*10^(3*10^(3*10^(3*10^570)))+3) = H190#5
[200] secientillion = 10^(3*10^(3*10^(3*10^(3*10^600)))+3) = H200#5 - "sec" + "cient"
[201] secienceprimillion = 10^(3*10^(3*10^(3*10^(3*10^603)))+3) = H201#5
[210] seciencedeizillion = 10^(3*10^(3*10^(3*10^(3*10^630)))+3) = H210#5
[250] seciencecinquantillion = 10^(3*10^(3*10^(3*10^(3*10^750)))+3) = H250#5
[300] tercientillion = 10^(3*10^(3*10^(3*10^(3*10^900)))+3) = H300#5 - "tert" + "cient"
[400] quatrecientillion = 10^(3*10^(3*10^(3*10^(3*10^1,200)))+3) = H400#5 - "quatre" (from French "quatre") + "cient"
[500] cinquecientillion = 10^(3*10^(3*10^(3*10^(3*10^1,500)))+3) = H500#5 - "cinque" + "cient"
[600] sexecientillion = 10^(3*10^(3*10^(3*10^(3*10^1,800)))+3) = H600#5 - "six" + "cient"
[700] seitecientillion = 10^(3*10^(3*10^(3*10^(3*10^2,100)))+3) = H700#5 - "seit" + "cient"
[800] ottecientillion = 10^(3*10^(3*10^(3*10^(3*10^2,400)))+3) = H800#5 - "ott" + "cient"
[900] naivecientillion = 10^(3*10^(3*10^(3*10^(3*10^2,700)))+3) = H900#5 - "naiv" + "cient"
[990] naiveciencenaiventillion = 10^(3*10^(3*10^(3*10^(3*10^2,970)))+3) = H990#5
[999] naiveciencenaivencenaivillion = 10^(3*10^(3*10^(3*10^(3*10^2,997)))+3) = H999#5
Unlike in tier 4, intermediate tier 5 -illion naming is quite straightforward even if the tier 5 roots are met with the tier 4 additives or multiplicatives as well.
And here, I made a comprehensive root table below:
And here is the tier 5 -illion number list:
The limit of the tier 5 -illion (tier 4 separator limit) is:
bencebontarretenaiveciencenaivencenaive-bencebontarretenaiveciencenaivenceotte-bencebontarretenaiveciencenaivenceseite-bencebontarretenaiveciencenaivencesixe-bencebontarretenaiveciencenaivencecinque-
bencebontarretenaiveciencenaivencequarte-bencebontarretenaiveciencenaivenceterte-bencebontarretenaiveciencenaivencesece-bencebontarretenaiveciencenaivenceprime-bencebontarretenaiveciencenaivente-
bencebontarretenaivecienceottencenaive-bencebontarretenaivecienceottenceotte-bencebontarretenaivecienceottenceseite-bencebontarretenaivecienceottencesixe-bencebontarretenaivecienceottencecinque-
bencebontarretenaivecienceottencequarte-bencebontarretenaivecienceottenceterte-bencebontarretenaivecienceottencesece-bencebontarretenaivecienceottenceprime-bencebontarretenaivecienceottente-
...
bencebontarretenaiveze-bencebontarreteotteze-bencebontarreteseiteze-bencebontarreteseze-bencebontarretequinze-
bencebontarretequatorze-bencebontarretetreze-bencebontarretedouze-bencebontarreteonze-bencebontarretedeize-
bencebontarretenaive-bencebontarreteotte-bencebontarreteseite-bencebontarretesixe-bencebontarretecinque-
bencebontarretequarte-bencebontarreteterte-bencebontarretesece-bencebontarreteprime-bencebontarretillion
I made the Tier 6 -illion names to be almost exactly the same as CompactStar's ones, which are both based on Greek quantitative prefixes. There are very few changes compared to the version 2.
In this tier, there are a lot of spelling variants of Greek quantitative prefix based roots here.
Here are the list of tier 6 -illions:
[1] hapaxillion = 10^(3*10^(3*10^(3*10^(3*10^3,000)))+3) = H1,000#5 = H1#6
[1+] hapakaprimillion = 10^(3*10^(3*10^(3*10^(3*10^3,003)))+3) = H1,001#5
[1+] hapakasecillion = 10^(3*10^(3*10^(3*10^(3*10^3,006)))+3) = H1,002#5
[1+] hapakatertillion = 10^(3*10^(3*10^(3*10^(3*10^3,009)))+3) = H1,003#5
[1+] hapakaquartillion = 10^(3*10^(3*10^(3*10^(3*10^3,012)))+3) = H1,004#5
[1+] hapakacinquillion = 10^(3*10^(3*10^(3*10^(3*10^3,015)))+3) = H1,005#5
[1+] hapakadeizillion = 10^(3*10^(3*10^(3*10^(3*10^3,030)))+3) = H1,010#5
[1+] hapakavintillion = 10^(3*10^(3*10^(3*10^(3*10^3,060)))+3) = H1,020#5
[1+] hapakatreintillion = 10^(3*10^(3*10^(3*10^(3*10^3,090)))+3) = H1,030#5
[1+] hapakaquarantillion = 10^(3*10^(3*10^(3*10^(3*10^3,120)))+3) = H1,040#5
[1+] hapakacinquantillion = 10^(3*10^(3*10^(3*10^(3*10^3,150)))+3) = H1,050#5
[1+] hapakacientillion = 10^(3*10^(3*10^(3*10^(3*10^3,300)))+3) = H1,100#5
[1+] hapakasecientillion = 10^(3*10^(3*10^(3*10^(3*10^3,600)))+3) = H1,200#5
[1+] hapakatercientillion = 10^(3*10^(3*10^(3*10^(3*10^3,900)))+3) = H1,300#5
[1+] hapakaquatrecientillion = 10^(3*10^(3*10^(3*10^(3*10^4,200)))+3) = H1,400#5
[1+] hapakacinquecientillion = 10^(3*10^(3*10^(3*10^(3*10^4,500)))+3) = H1,500#5
[1+] hapakasexecientillion = 10^(3*10^(3*10^(3*10^(3*10^4,800)))+3) = H1,600#5
[1+] hapakaseitecientillion = 10^(3*10^(3*10^(3*10^(3*10^5,100)))+3) = H1,700#5
[1+] hapakaottecientillion = 10^(3*10^(3*10^(3*10^(3*10^5,400)))+3) = H1,800#5
[1+] hapakanaivecientillion = 10^(3*10^(3*10^(3*10^(3*10^5,700)))+3) = H1,900#5
[1*] secapaxillion = 10^(3*10^(3*10^(3*10^(3*10^6,000)))+3) = H2,000#5
[1*+] secapakaprimillion = 10^(3*10^(3*10^(3*10^(3*10^6,003)))+3) = H2,001#5
[1*+] secapakadeizillion = 10^(3*10^(3*10^(3*10^(3*10^6,030)))+3) = H2,010#5
[1*+] secapakacientillion = 10^(3*10^(3*10^(3*10^(3*10^6,300)))+3) = H2,100#5
[1*] tertapaxillion = 10^(3*10^(3*10^(3*10^(3*10^9,000)))+3) = H3,000#5
[1*] quartapaxillion = 10^(3*10^(3*10^(3*10^(3*10^12,000)))+3) = H4,000#5
[1*] cinquapaxillion = 10^(3*10^(3*10^(3*10^(3*10^15,000)))+3) = H5,000#5
[1*] sixapaxillion = 10^(3*10^(3*10^(3*10^(3*10^18,000)))+3) = H6,000#5
[1*] seitapaxillion = 10^(3*10^(3*10^(3*10^(3*10^21,000)))+3) = H7,000#5
[1*] ottapaxillion = 10^(3*10^(3*10^(3*10^(3*10^24,000)))+3) = H8,000#5
[1*] naivapaxillion = 10^(3*10^(3*10^(3*10^(3*10^27,000)))+3) = H9,000#5
[1*] deizapaxillion = 10^(3*10^(3*10^(3*10^(3*10^30,000)))+3) = H10,000#5
[1*] vinzapaxillion = 10^(3*10^(3*10^(3*10^(3*10^60,000)))+3) = H20,000#5
[1*] cienzapaxillion = 10^(3*10^(3*10^(3*10^(3*10^300,000)))+3) = H100,000#5
[2] disillion = 10^(3*10^(3*10^(3*10^(3*10^3,000,000)))+3) = H1,000,000#5 = H2#6
[2*] deizadisillion = 10^(3*10^(3*10^(3*10^(3*10^30,000,000)))+3) = H10,000,000#5
[2*] cienzadisillion = 10^(3*10^(3*10^(3*10^(3*10^300,000,000)))+3) = H100,000,000#5
[3] trisillion = 10^(3*10^(3*10^(3*10^(3*10^3,000,000,000)))+3) = H1,000,000,000#5 = H3#6
[3*] deizatrisillion = 10^(3*10^(3*10^(3*10^(3*10^30,000,000,000)))+3) = H10,000,000,000#5
[3*] cienzatrisillion = 10^(3*10^(3*10^(3*10^(3*10^300,000,000,000)))+3) = H100,000,000,000#5
[4] tetrakisillion = 10^(3*10^(3*10^(3*10^(3*10^3,000,000,000,000)))+3) = H1,000,000,000,000#5 = H4#6
[5] pentakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^15))))+3) = H5#6
[6] hexakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^18))))+3) = H6#6
[7] heptakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^21))))+3) = H7#6
[8] octakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^24))))+3) = H8#6
[9] enneakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^27))))+3) = H9#6
[10] decakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^30))))+3) = H10#6
[1#] doodecakisillion = 10^(3*10^(3*10^(6*10^(3*10^(3*10^30))))+3) = H(2*10^(3*10^(3*10^30)))#3 *used to resolve a conflict with dodecakisillion.
[11] hendecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^33))))+3) = H11#6
[12] dodecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^36))))+3) = H12#6
[13] triadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^39))))+3) = H13#6
[14] tessaradecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^42))))+3) = H14#6
[15] pentadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^45))))+3) = H15#6
[16] hexadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^48))))+3) = H16#6
[17] heptadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^51))))+3) = H17#6
[18] octadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^54))))+3) = H18#6
[19] enneadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^57))))+3) = H19#6
[20] icosikisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^60))))+3) = H20#6
[21] icosihenakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^63))))+3) = H21#6
[22] icosidyakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^66))))+3) = H22#6
[23] icositryakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^69))))+3) = H23#6
[24] icositetrakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^72))))+3) = H24#6
[25] icosipentakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^75))))+3) = H25#6
[26] icosihexakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^78))))+3) = H26#6
[27] icosiheptakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^81))))+3) = H27#6
[28] icosioctakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^84))))+3) = H28#6
[29] icosienneakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^87))))+3) = H29#6
[30] triacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^90))))+3) = H30#6
[40] tessaracontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^120))))+3) = H40#6
[50] pentacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^150))))+3) = H50#6
[60] hexacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^180))))+3) = H60#6
[70] heptacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^210))))+3) = H70#6
[80] octacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^240))))+3) = H80#6
[90] enneacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^270))))+3) = H90#6
[99] enneacontaenneakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^297))))+3) = H99#6
[100] hecatontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^300))))+3) = H100#6
[101] hecatontahenakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^303))))+3) = H101#6
[102] hecatontadyakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^306))))+3) = H102#6
[103] hecatontatryakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^309))))+3) = H103#6
[104] hecatontatetrakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^312))))+3) = H104#6
[105] hecatontapentakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^315))))+3) = H105#6
[110] hecatontadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^330))))+3) = H110#6
[111] hecatontahendecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^333))))+3) = H111#6
[112] hecatontadodecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^336))))+3) = H112#6
[120] hecatontaicosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^360))))+3) = H120#6
[121] hecatontaicosahenakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^363))))+3) = H121#6
[122] hecatontaicosadyakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^366))))+3) = H122#6
[130] hecatontatriacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^390))))+3) = H130#6
[140] hecatontatessaracontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^420))))+3) = H140#6
[150] hecatontapentacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^450))))+3) = H150#6
[160] hecatontahexacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^480))))+3) = H160#6
[170] hecatontaheptacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^510))))+3) = H170#6
[180] hecatontaoctacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^540))))+3) = H180#6
[190] hecatontaenneacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^570))))+3) = H190#6
[200] diacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^600))))+3) = H200#6
[201] diacosahenakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^603))))+3) = H201#6
[210] diacosadecakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^630))))+3) = H210#6
[250] diacosapentacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^750))))+3) = H250#6
[300] triacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^900))))+3) = H300#6
[400] tetracosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^1,200))))+3) = H400#6
[500] pentacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^1,500))))+3) = H500#6
[600] hexacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^1,800))))+3) = H600#6
[700] heptacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^2,100))))+3) = H700#6
[800] octacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^2,400))))+3) = H800#6
[900] enneacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^2,700))))+3) = H900#6
[990] enneacosaenneacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^2,970))))+3) = H990#6
[999] enneacosaenneacontaenneakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^2,997))))+3) = H999#6
The tier 6 -illion additive roots are far more complex than the previous tier. It's based on a greek language of "plus" called "συν". It’s pronounced as "syn" in English, as in "syndrome", "synergy", "synonym", "syntax", and "synthesis". It will be used for "-is" ending roots only. [subjoin - episynápto]
Here’s a table lookup for tier 6 -illions, because it is not difficult to fill up the roots beyond 20.
Alternative version:
And here is the tier 5 multiplicative roots to tier 6 -illions.
And finally, here is an overview table of the entire tier 6 -illions.
The limit of the tier 6 -illion (tier 5 separator limit) is:
naiveciencenaivencenaivaenneacosienneacontaenneakisya-naiveciencenaivencenaivaenneacosienneacontaoctakisya-naiveciencenaivencenaivaenneacosienneacontaheptakisya-naiveciencenaivencenaivaenneacosienneacontahexakisya-naiveciencenaivencenaivaenneacosienneacontapentakisya-naiveciencenaivencenaivaenneacosienneacontatetrakisya-naiveciencenaivencenaivaenneacosienneacontatryakisya-naiveciencenaivencenaivaenneacosienneacontadyakisya-naiveciencenaivencenaivaenneacosienneacontahenakisya-naiveciencenaivencenaivaenneacosienneacontakisya-
naiveciencenaivencenaivaenneacosioctacontaenneakisya-naiveciencenaivencenaivaenneacosioctacontaoctakisya-naiveciencenaivencenaivaenneacosioctacontaheptakisya-naiveciencenaivencenaivaenneacosioctacontahexakisya-naiveciencenaivencenaivaenneacosioctacontapentakisya-naiveciencenaivencenaivaenneacosioctacontatetrakisya-naiveciencenaivencenaivaenneacosioctacontatryakisya-naiveciencenaivencenaivaenneacosioctacontadyakisya-naiveciencenaivencenaivaenneacosioctacontahenakisya-naiveciencenaivencenaivaenneacosioctacontakisya-
...
naiveciencenaivencenaivaenneadecakisya-naiveciencenaivencenaivaoctadecakisya-naiveciencenaivencenaivaheptadecakisya-naiveciencenaivencenaivahexadecakisya-naiveciencenaivencenaivapentadecakisya-
naiveciencenaivencenaivatetradecakisya-naiveciencenaivencenaivatriadecakisya-naiveciencenaivencenaivadodecakisya-naiveciencenaivencenaivahendecakisya-naiveciencenaivencenaivadecakisya-
naiveciencenaivencenaivaenneakisya-naiveciencenaivencenaivaoctakisya-naiveciencenaivencenaivaheptakisya-naiveciencenaivencenaivahexakisya-naiveciencenaivencenaivapentakisya-naiveciencenaivencenaivatetrakisya-
naiveciencenaivencenaivatrisya-naiveciencenaivencenaivadisya-naiveciencenaivencenaivahapaka-naiveciencenaivencenaivillion
But my first part isn't that over yet. There are two more tiers left to go – tier 7 based on common color names, and tier 8 based on chemical elements. These ideas are recycled from my "Grand Science" -illion naming, except being slightly modified.
Welcome to the early tetrational realm! Exponents start to become close between two adjacent floors and becoming progressively less significant. However, my idea of coining intermediate -illions is still heavy with some alleged color-based tier 7 roots.
I gave some ideas based on Aarex Tiaokhiao and MrRedShark77 for coining some tier 7 -illions, with the name "redillion" being exactly the same as both Aarex and MrRedShark77.
– – [ [ CHECK OUT THE MrRedShark77'S TIER 7 & 8 -ILLIONS HERE ] ] – –
Tier 7 -illions are easy to generalize, as there are nothing complex here.
Here are some tier 7 -illions:
[1] redillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000))))+3) = H1,000#6 = H1#7 - from "red"
[1+] redona-hapaxillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,003))))+3) = H1,001#6
[1+] redona-disillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,006))))+3) = H1,002#6
[1+] redona-trisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,009))))+3) = H1,003#6
[1+] redona-tetrakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,012))))+3) = H1,004#6
[1+] redona-pentakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,015))))+3) = H1,005#6
[1+] redona-decakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,030))))+3) = H1,010#6
[1+] redona-icosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,060))))+3) = H1,020#6
[1+] redona-triacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,090))))+3) = H1,030#6
[1+] redona-tessaracontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,120))))+3) = H1,040#6
[1+] redona-pentacontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,150))))+3) = H1,050#6
[1+] redona-hecatontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,300))))+3) = H1,100#6
[1+] redona-diacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,600))))+3) = H1,200#6
[1+] redona-triacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,900))))+3) = H1,300#6
[1+] redona-tetracosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^4,200))))+3) = H1,400#6
[1+] redona-pentacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^4,500))))+3) = H1,500#6
[1+] redona-hexacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^4,800))))+3) = H1,600#6
[1+] redona-heptacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^5,100))))+3) = H1,700#6
[1+] redona-octacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^5,400))))+3) = H1,800#6
[1+] redona-enneacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^5,700))))+3) = H1,900#6
[1*] dyaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^6,000))))+3) = H2,000#6
[1*+] dyaredona-hapaxillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^6,003))))+3) = H2,001#6
[1*+] dyaredona-decakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^6,030))))+3) = H2,010#6
[1*+] dyaredona-hecatontakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^6,300))))+3) = H2,100#6
[1*+] dyaredona-pentacosakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^7,500))))+3) = H2,500#6
[1*] tryaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^9,000))))+3) = H3,000#6
[1*] tetrakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^12,000))))+3) = H4,000#6
[1*] pentakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^15,000))))+3) = H5,000#6
[1*] hexakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^18,000))))+3) = H6,000#6
[1*] heptakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^21,000))))+3) = H7,000#6
[1*] octakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^24,000))))+3) = H8,000#6
[1*] enneakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^27,000))))+3) = H9,000#6
[1*] decakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^30,000))))+3) = H10,000#6
[1*] icosakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^60,000))))+3) = H20,000#6
[1*] triacontakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^90,000))))+3) = H30,000#6
[1*] hecatontakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000))))+3) = H100,000#6
[1*] diacosakiaredillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^600,000))))+3) = H200,000#6
[2] orangillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000))))+3) = H1,000,000#6 = H2#7 - from "orange"
[2*] decakiaorangillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^30,000,000))))+3) = H10,000,000#6
[2*] hecatontakiaorangillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000,000))))+3) = H100,000,000#6
[3] yellowillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000,000))))+3) = H1,000,000,000#6 = H3#7 - from "yellow"
[3*] decakiayellowillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000,000))))+3) = H10,000,000,000#6
[3*] hecatontakiayellowillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000,000,000))))+3) = H100,000,000,000#6
[4] limillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000,000,000))))+3) = H1,000,000,000,000#6 = H4#7 - from "lime"
[5] greenillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^15)))))+3) = H5#7 - from "green"
[6] cyanillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^18)))))+3) = H6#7 - from "cyan"
[7] bluillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^21)))))+3) = H7#7 - from "blue"
[8] purplillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^24)))))+3) = H8#7 - from "purple"
[9] magentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^27)))))+3) = H9#7 - from "magenta"
[10] pinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30)))))+3) = H10#7 - from "pink"
[11] redopinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^33)))))+3) = H11#7
[12] orapinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^36)))))+3) = H12#7
[13] yellopinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^39)))))+3) = H13#7
[14] limipinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^42)))))+3) = H14#7
[15] grepinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^45)))))+3) = H15#7
[16] cyanipinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^48)))))+3) = H16#7
[17] bluipinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^51)))))+3) = H17#7
[18] puripinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^54)))))+3) = H18#7
[19] magipinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^57)))))+3) = H19#7
[20] vermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^60)))))+3) = H20#7 - from "vermilion" or "vermillion" - this is coincidental, pun intended!
[21] redovermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^63)))))+3) = H21#7
[22] oravermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^66)))))+3) = H22#7
[23] yellovermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^69)))))+3) = H23#7
[24] limivermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^72)))))+3) = H24#7
[25] grevermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^75)))))+3) = H25#7
[26] cyanivermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^78)))))+3) = H26#7
[27] bluivermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^81)))))+3) = H27#7
[28] purivermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^84)))))+3) = H28#7
[29] magivermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^87)))))+3) = H29#7
[30] ambillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^90)))))+3) = H30#7 - from "amber"
[40] chartrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^120)))))+3) = H40#7 - from "chartreuse"
[50] tealillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^150)))))+3) = H50#7 - from "teal"
[60] skyillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^180)))))+3) = H60#7 - from "sky blue"
[70] indigillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^210)))))+3) = H70#7 - from "indigo"
[80] violetillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^240)))))+3) = H80#7 - from "violet"
[90] fuchsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^270)))))+3) = H90#7 - from "fuchsia"
[99] magifuchsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^297)))))+3) = H99#7
[100] crimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300)))))+3) = H100#7 - from "crimson"
[101] redocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^303)))))+3) = H101#7
[102] oracrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^306)))))+3) = H102#7
[103] yellocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^309)))))+3) = H103#7
[104] limicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^312)))))+3) = H104#7
[105] grecrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^315)))))+3) = H105#7
[106] cyanicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^318)))))+3) = H106#7
[107] bluicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^321)))))+3) = H107#7
[108] puricrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^324)))))+3) = H108#7
[109] magicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^327)))))+3) = H109#7
[110] pinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H110#7
[111] redopinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H111#7
[112] orapinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H112#7
[113] yellopinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H113#7
[114] limipinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H114#7
[115] greepinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H115#7
[116] cyanipinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H116#7
[117] bluipinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H117#7
[118] puripinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H118#7
[119] magipinkocrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330)))))+3) = H119#7
[120] vermicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^360)))))+3) = H120#7
[130] ambicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^390)))))+3) = H130#7
[140] charicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^420)))))+3) = H140#7
[150] tealicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^450)))))+3) = H150#7
[160] skycrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^480)))))+3) = H160#7
[170] indicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^510)))))+3) = H170#7
[180] violecrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^540)))))+3) = H180#7
[190] fuchicrimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^570)))))+3) = H190#7
[200] scarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^600)))))+3) = H200#7 - from "scarlet"
[201] redoscarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^603)))))+3) = H201#7
[210] pinkoscarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^630)))))+3) = H210#7
[220] vermiscarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^660)))))+3) = H220#7
[250] tealiscarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^750)))))+3) = H250#7
[300] brownillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^900)))))+3) = H300#7 - from "brown"
[400] olivillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,200)))))+3) = H400#7 - from "olive"
[500] aquillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,500)))))+3) = H500#7 - from "aqua"
[600] lavendillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,800)))))+3) = H600#7 - from "lavender"
[700] blackillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,100)))))+3) = H700#7 - from "black"
[800] grayillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,400)))))+3) = H800#7 - from "gray"
[900] whitillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,700)))))+3) = H900#7 - from "white"
[990] fuchiwhitillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,970)))))+3) = H990#7
[999] magifuchiwhitillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,997)))))+3) = H999#7
Here are the roots of tier 7 -illions:
Tier 6 multiplicative root changes:
2: dis => dya-
3: tris => trya-
4+: -kis => -kia-
Earlier tier changes:
Tier 4 additive root for tier 7+ -illions: Tier 7+ root + "-ea-"
Tier 5 additive root for tier 7+ -illions: Tier 7+ root + "-isya-"
Tier 7 additive roots immediately followed after tier 8+ (fixing conflicts):
Tier 7 -illion table overview:
Next, let's name tier 8 -illions based on chemical elements in the periodic table! This is also inspired by MrRedShark77 too!
As with tier 7, tier 8 is also easy to generalize due to the simpleness of the roots and etymologies.
Tier 6 additive root for tier 8+ -illions: Tier 8+ root + "-ona-"
List:
[1] hydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000)))))+3) = H1,000#7 = H1#8 - from "hydrogen"
[1+] hydro'redillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,003)))))+3) = H1,001#7
[1+] hydro'orangillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,006)))))+3) = H1,002#7
[1+] hydro'yellowillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,009)))))+3) = H1,003#7
[1+] hydro'limillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,012)))))+3) = H1,004#7
[1+] hydro'greenillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,015)))))+3) = H1,005#7
[1+] hydro'pinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,030)))))+3) = H1,010#7
[1+] hydro'vermillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,060)))))+3) = H1,020#7
[1+] hydro'ambillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,090)))))+3) = H1,030#7
[1+] hydro'chartrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,120)))))+3) = H1,040#7
[1+] hydro'tealillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,150)))))+3) = H1,050#7
[1+] hydro'crimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,300)))))+3) = H1,100#7
[1+] hydro'scarletillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,600)))))+3) = H1,200#7
[1+] hydro'brownillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,900)))))+3) = H1,300#7
[1+] hydro'oliveillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^4,200)))))+3) = H1,400#7
[1+] hydro'aquillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^4,500)))))+3) = H1,500#7
[1+] hydro'lavendillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^4,800)))))+3) = H1,600#7
[1+] hydro'blackillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^5,100)))))+3) = H1,700#7
[1+] hydro'grayillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^5,400)))))+3) = H1,800#7
[1+] hydro'whitillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^5,700)))))+3) = H1,900#7
[1*] orangehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6,000)))))+3) = H2,000#7
[1*+] orangehydro'redillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6,003)))))+3) = H2,001#7
[1*+] orangehydro'pinkillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6,030)))))+3) = H2,010#7
[1*+] orangehydro'crimsillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^6,300)))))+3) = H2,100#7
[1*+] orangehydro'aquillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^7,500)))))+3) = H2,500#7
[1*] yellohydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^9,000)))))+3) = H3,000#7
[1*] limehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^12,000)))))+3) = H4,000#7
[1*] greehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^15,000)))))+3) = H5,000#7
[1*] cyahydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^18,000)))))+3) = H6,000#7
[1*] bluehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^21,000)))))+3) = H7,000#7
[1*] purplehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^24,000)))))+3) = H8,000#7
[1*] magehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^27,000)))))+3) = H9,000#7
[1*] pinkonahydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30,000)))))+3) = H10,000#7
[1*] vermehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^60,000)))))+3) = H20,000#7
[1*] ambehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^90,000)))))+3) = H30,000#7
[1*] crimsonahydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000)))))+3) = H100,000#7
[1*] scarlehydrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^600,000)))))+3) = H200,000#7
[2] helillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000)))))+3) = H1,000,000#7 = H2#8 - from "helium"
[2*] pinkonahelillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30,000,000)))))+3) = H10,000,000#7
[2*] crimsonahelillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000,000)))))+3) = H100,000,000#7
[3] lithillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000,000)))))+3) = H1,000,000,000#7 = H3#8 - from "lithium"
[3*] pinkonalithillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30,000,000,000)))))+3) = H10,000,000,000#7
[3*] crimsonalithillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300,000,000,000)))))+3) = H100,000,000,000#7
[4] berylillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^3,000,000,000,000)))))+3) = H1,000,000,000,000#7 = H4#8 - from "beryllium"
[5] borillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^15))))))+3) = H5#8 - from "boron"
[6] carbillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^18))))))+3) = H6#8 - from "carbon"
[7] nitrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^21))))))+3) = H7#8 - from "nitrogen"
[8] oxygillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^24))))))+3) = H8#8 - from "oxygen"
[9] fluorillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^27))))))+3) = H9#8 - from "fluorine"
[10] neonillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^30))))))+3) = H10#8 - from "neon"
[11] sodillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^33))))))+3) = H11#8 - from "sodium"
[12] magnesillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^36))))))+3) = H12#8 - from "magnesium"
[13] aluminillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^39))))))+3) = H13#8 - from "aluminium"
[14] silicillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^42))))))+3) = H14#8 - from "silicon"
[15] phosphorillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^45))))))+3) = H15#8 - from "phosphorus"
[16] sulfillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^48))))))+3) = H16#8 - from "sulfur"
[17] chlorillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^51))))))+3) = H17#8 - from "chlorine"
[18] argonillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^54))))))+3) = H18#8 - from "argon"
[19] potassillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^57))))))+3) = H19#8 - from "potassium"
[20] calcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^60))))))+3) = H20#8 - from "calcium"
[21] hycalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^63))))))+3) = H21#8
[22] hecalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^66))))))+3) = H22#8
[23] licalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^69))))))+3) = H23#8
[24] berycalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^72))))))+3) = H24#8
[25] bocalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^75))))))+3) = H25#8
[26] carcalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^78))))))+3) = H26#8
[27] nicalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^81))))))+3) = H27#8
[28] oxocalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^84))))))+3) = H28#8
[29] fluocalcillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^87))))))+3) = H29#8
[30] titanillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^90))))))+3) = H30#8 - from "titanium"
[40] chromillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^120))))))+3) = H40#8 - from "chromium"
[50] ferrillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^150))))))+3) = H50#8 - from "ferrum" (iron)
[60] cobaltillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^180))))))+3) = H60#8 - from "cobalt"
[70] cuprillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^210))))))+3) = H70#8 - from "cuprum" (copper)
[80] zincillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^240))))))+3) = H80#8 - from "zinc" - The final "c" is always pronouced with the hard C sound (/k/), even if they are followed by either the "e", "i", or "y", to match the pronunciation of the English word "zinc".
[90] bromillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^270))))))+3) = H90#8 - from "bromine"
[99] fluobromillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^297))))))+3) = H99#8
[100] kryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^300))))))+3) = H100#8 - from "krypton"
[101] hykryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^303))))))+3) = H101#8
[102] hekryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^306))))))+3) = H102#8
[103] likryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^309))))))+3) = H103#8
[104] berykryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^312))))))+3) = H104#8
[105] bokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^315))))))+3) = H105#8
[106] carkryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^318))))))+3) = H106#8
[107] nikryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^321))))))+3) = H107#8
[108] oxokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^324))))))+3) = H108#8
[109] fluokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^327))))))+3) = H109#8
[110] neokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^330))))))+3) = H110#8
[111] sodokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^333))))))+3) = H111#8
[112] magnokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^336))))))+3) = H112#8
[113] alumokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^339))))))+3) = H113#8
[114] silicokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^342))))))+3) = H114#8
[115] phosphokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^345))))))+3) = H115#8
[116] sulfokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^348))))))+3) = H116#8
[117] chlokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^351))))))+3) = H117#8
[118] argokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^354))))))+3) = H118#8
[119] potassokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^357))))))+3) = H119#8
[120] calcokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^360))))))+3) = H120#8
[130] titanokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^390))))))+3) = H130#8
[140] chromokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^420))))))+3) = H140#8
[150] ferrokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^450))))))+3) = H150#8
[160] cobaltokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^480))))))+3) = H160#8
[170] cuprokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^510))))))+3) = H170#8
[180] zincokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^540))))))+3) = H180#8
[190] bromokryptillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^570))))))+3) = H190#8
[200] argentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^600))))))+3) = H200#8 - from "argentum" (silver)
[201] hyargentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^603))))))+3) = H201#8
[210] neoargentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^630))))))+3) = H210#8
[220] calcoargentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^660))))))+3) = H220#8
[250] ferroargentillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^750))))))+3) = H250#8
[300] stannillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^900))))))+3) = H300#8 - from "stannum" (tin)
[400] iodillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,200))))))+3) = H400#8 - from "iodine"
[500] platillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,500))))))+3) = H500#8 - from "platinum"
[600] aurillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^1,800))))))+3) = H600#8 - from "aurum" (gold)
[700] plumbillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,100))))))+3) = H700#8 - from "plumbum" (lead)
[800] uranillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,400))))))+3) = H800#8 - from "uranium"
[900] plutillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,700))))))+3) = H900#8 - from "plutonium"
[990] bromoplutillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,970))))))+3) = H990#8
[999] fluobromoplutillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^2,997))))))+3) = H999#8
Here are the roots of tier 8 -illions:
Tier 8 -illion table overview:
Comparison with googol-n-plex:
gintarrijillion = 10^(3*10^(3*10^(3*10^99))+3)
googoltriplex = 10^10^10^10^100 - Comparable to tier 4
gintarrastillion = 10^(3*10^(3*10^(3*10^99))+3)
...
treincetertillion = 10^(3*10^(3*10^(3*10^(3*10^99)))+3)
googolquadriplex = 10^10^10^10^10^100 - Comparable to tier 5
treincequartillion = 10^(3*10^(3*10^(3*10^(3*10^102)))+3)
...
triacontatryakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^99))))+3)
googolquinplex / googolquintiplex = 10^10^10^10^10^10^100 - Comparable to tier 6
triacontatetrakisillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^102))))+3)
...
yelloambillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^99)))))+3)
googolsextiplex = 10^10^10^10^10^10^10^100 - Comparable to tier 7
limiambillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^102)))))+3)
...
lititanillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^99))))))+3)
googolseptiplex = 10^10^10^10^10^10^10^10^100 - Comparable to tier 8
berytitanillion = 10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^(3*10^102))))))+3)
...