Numbrs of the Feracity chronology:
<--- [2022] Flenary of Ukrainian Town | [2022-2024] Glycogenic Journey of the Britains | [2025] Anterior of Swiftieism --->
[FINAL] No more new numbers. Only changes.
CHECK OUT THE CRAZY "SWIFTIE" SERIES RIGHT!
A successor to Flenary of Ukrainian Town.
Final members: 196
April 23th, 2025: I was overlooked about the point for the 184th number, and I changed the name and moved it into #196.
November 29th, 2024: The series is finally completed and finalized! Check out the new series named after "Swifties" now!
September 20th, 2024: 46 new numbers created! This is a big comeback!
September 21st, 2024: Second straight day update! Lucky!
September 23th, 2024: A very minor change to "Woo the Flavor of Ammonium Nitrate".
November 29th, 2024: Finalizing the series, preparing for the successor "the APT. Killer Kingdom".
January 19th, 2024: "APT. Killer Kingdom" was made independent!
1. La admisible = 13,824 (Spanish for "The Admissible")
2. Profundidad del mundo = 7^11^13 = 7^34,522,712,143,931 ~ 2.954*10^29,175,076,368,812 (Spanish for "Depth of the World")
3. Нигде = 1/10^10^100,000,000,000 (Russian for "Nowhere")
4. Бромид натрия = 10^^50 (Russian for "Sodium Bromide")
5. Зажги его миллионом звезд = 1,000,000{1,000,000}1,000,000 in hyperoperator notation (Russian for "Light it up with one million stars")
6. Amore nella sua distruzione = 502,592,611,936,843 = 43^9 (Italian for "Love in his destruction")
7. Nessun diamante in esplorazione = 230^230 ~ 1.5754415*10^543 (Italian for "No diamonds in exploration")
8. Complimentary = 271
9. Zilupe = 4^^768 & 192 in BEAF tetrational arrays
10. Bring em' up, just no damage = 52,521,875 = 35^5
11. More than just one child will evolve = 222,111 = 333*667 = 666th triangular number
12. Allies of the Falklands = 98,765
13. Sorry for my home collapse! = 1/E100##100#100 = 1/graatagold
14. Chemical agency = 10^(3*10^10^1,000+3) (*formerly "Chemical bomb")
15. Tuk Tuk = 10^10^10,000
16. Pacific Swarms = 34,359,738,368 = 2^35
17. Outlaw = 1,152
18. Anti-carbon monoxide reactor = e^(1/384) ~ 1.002607560454 (*formerly "You're poisoned with carbon monoxide and you died!!!" and "You're poisoned with cyanide and you died!!!" prior as they were considered to be harmful.)
19. Bring it! = 399
20. Buts of carnage = Circle(69) in Steinhaus-Moser notation
21. Tapa de la muerte = Hexagon(1,200) in Steinhaus-Moser notation (Spanish for "Death cap")
22. Bugonarew = 1,000,555,666,555,444,001
23. African Panda = 979,979
24. Yhaaaaaaaaaaaaaaaaqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq = 99[9,9,0,0,0,99,142857,1337,1,1,1,1,1,1,1,1,1,10^^yultillion,69!420] using Extensible Illion System, where yultillion = 10^(3*10^(3*10^(2.4*10^43))+3) (8*10^42-th Tier 3 -illion), and ! indicates the Hyperfactorial array notation.
25. Sultan Nirvana = 420£ using BOX_M~'s £ function
26. Blizzard = 135¥ using BOX_M~'s ¥ function
27. Lightning Fumes = 135¥~ using BOX_M~'s ¥~ function
28. Greenlandillion = 1/3^^^3 = 1/3^^7,625,597,484,987 = 1/tritri
29. Fart = 55,555
30. Inari Suomi = 2,304
31. The Message = 2^^2,048
32. Belarusian Border = Booga(Inari Suomi) = 2,304{2,302}2,304 = 2,304^^^^^...^^^^^2,304 w/ 2,302 arrows
33. Crying Child of Macedonians = 52,947
34. Anamona Rabier = A(17,11) using Ackermann function
35. Mika-Polska = E(672) using Exploding Tree Function
36. Bratislava = A(5,5) using Ackermann function
37. Lake Lubans = 10↓↓↓↓↓↓↓↓↓↓10 (10 down arrows) using down-arrow notation
38. Super Anamona Rabier = A(Anamona Rabier, Anamona Rabier) using Ackermann function
39. Super Mario Sisters = 10^10^12,431 = 10^Marioplex
40. Minecraftduplex = 10^10^10^215 = 10^Minecraftplex
41. Porcelain = 91,125
42. Miku Miku the Hard Rave = cg(2,147,483,647) = cg(TNT)
43. Hungarian Bezers = 7^^^^^^^7
44. Darknessful = 65^3 = 274,625
45. Toxic Lake = 1/Bratislava
46. Little Duchy = s(99)(99) using Fish's s(n) map
47. Grand Duchy = m(9)m(8)m(7)m(6)m(5)m(4)m(3)m(2)m(1)(99) using Fish's m(n) map
48. Great Grand Duchy = m(1,4)m(1,3)m(1,2)m(1,1)(99) using Fish's m(m,n) map
49. Solar Sandworm = Worm(768)
50. Irish Hydra = Hydra(420) (Kirby-Paris hydra function)
51. Maltese British Catholic Church = N_{ω^ω^ω^ω^ω^ω}(100) using N-growing hierarchy
52. Dark Jugoslavia = 432,157,848
53. Ethereal Lumoform = 2^^1,048,576
54. Asteroix = 999,888,777,666,555,444,333,222,111,000
55. Entry of the Hopeless = 123,456,789,987,654,321 (*formerly "Entry of the Death")
56. Mario World Gods Super Duper Eternal = 10^10^10^12,431 = 10^10^Marioplex = 10^Super Mario Systers
57. Minecrafttriplex / Minecraftgargantulene = 10^10^10^10^215 = 10^10^Minecraftplex = 10^Minecraftduplex
58. Yerevan = 10^^^1,000,000
59. Rainery = 99{99}99 in Bowers' hyperoperator notation = 99^^^^^...^^^^^99 with 99 arrows
60. Nether Update = f_{ω^ω}(576) using the fast-growing hierarchy
61. Caves and Cliffs = f_ε0(576) using the fast-growing hierarchy
62. The Wild Update = f_ζ0(576) using the fast-growing hierarchy
63. Mariupol = f_Γ0(576) using the fast-growing hierarchy
64. Białystok = f_{ψ0(Ω^Ω^Ω)}(576) using the fast-growing hierarchy (extended Buchholz's function, ψ0(Ω^Ω^Ω) denotes the large Veblen ordinal)
65. Belgorod = f_{ψ0(Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^5(0))}(576) using the fast-growing hierarchy (extended Buchholz's function)
66. Sevastopol = f_{ψ0(Ω^Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^6(0))}(576) using the fast-growing hierarchy (extended Buchholz's function)
67. Deprived agency = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^7(0))}(576) using the fast-growing hierarchy (extended Buchholz's function) (*formerly "osmium tetroxide" as being moved to the part of the molar mass notation numbers)
68. Urushiol = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^8(0))}(576) using the fast-growing hierarchy (extended Buchholz's function)
69. Ice Cream Monolith = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^9(0))}(576) using the fast-growing hierarchy (extended Buchholz's function)
70. The Icy Wall = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω)}(576) = f_{ψ0(ψ1^10(0))}(576) using the fast-growing hierarchy (extended Buchholz's function)
71. Wallis and Futunaillion = Rayo(314π) ~ Rayo(986.46009322719507687727002234976) where π is the "Pi" constant, and Rayo denotes the Rayo function
72. Osuna = f_{ε_ω}(420) using the fast-growing hierarchy
73. Humonurgium = f_{φ(ω,0)}(420) using the fast-growing hierarchy
74. Võro = f_{ψ0(Ω^Ω^ω)}(420) using the fast-growing hierarchy (extended Buchholz's function, ψ0(Ω^Ω^ω) denotes the small Veblen ordinal)
75. Zitrite = f_{ψ0(Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^3(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
76. Nightmare Fuel = f_{ψ0(Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^4(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
77. Delightful Dreams = f_{ψ0(Ω^Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^5(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
78. Zakopane = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^6(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
79. Midland Ponds = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^7(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
80. Haunted Rift = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^8(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
81. World Thread = f_{ψ0(Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω^Ω^ω)}(420) = f_{ψ0(ψ1^9(ψ0(0)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
82. The U.L.T.I.M.A.T.E Pocket = f_{ψ0(Ω_2)}(420) using the fast-growing hierarchy (extended Buchholz's function, ψ0(Ω_2) denotes the Bachmann-Howard ordinal)
83. The H.Y.P.E.R Pocket = f_{ψ0(Ω_3)}(420) using the fast-growing hierarchy (extended Buchholz's function)
84. The M.E.T.A Pocket = f_{ψ0(Ω_4)}(420) using the fast-growing hierarchy (extended Buchholz's function)
85. E.V.E.R.Y.T.H.I.N.G Pocket = f_{ψ0(Ω_ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
86. S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket = f_{ψ0(Ω_{ω+1})}(420) using the fast-growing hierarchy (extended Buchholz's function, ψ0(Ω_{ω+1}) = ψ0(ε(Ω_ω+1)) = Takeuti-Feferman-Buchholz ordinal)
87. M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket = f_{ψ0(Ω_{ω+2})}(420) using the fast-growing hierarchy (extended Buchholz's function)
88. G.I.G.A. M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / G..M..S..E Pocket = f_{ψ0(Ω_{ω2})}(420) using the fast-growing hierarchy (extended Buchholz's function)
89. T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / T..G..M..S..E Pocket = f_{ψ0(Ω_{ω3})}(420) using the fast-growing hierarchy (extended Buchholz's function)
90. D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / D..T..G..M..S..E Pocket = f_{ψ0(Ω_{ω^2})}(420) using the fast-growing hierarchy (extended Buchholz's function)
91. T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{ω^3})}(420) using the fast-growing hierarchy (extended Buchholz's function)
92. E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{ω^ω})}(420) using the fast-growing hierarchy (extended Buchholz's function)
93. A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{ω^ω^ω})}(420) using the fast-growing hierarchy (extended Buchholz's function)
94. C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω))}(420) using the fast-growing hierarchy (extended Buchholz's function)
95. O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω^2))}(420) using the fast-growing hierarchy (extended Buchholz's function)
96. O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω^Ω))}(420) using the fast-growing hierarchy (extended Buchholz's function)
97. U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω^Ω^Ω))}(420) using the fast-growing hierarchy (extended Buchholz's function)
98. M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_2))}(420) using the fast-growing hierarchy (extended Buchholz's function)
99. S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_3))}(420) using the fast-growing hierarchy (extended Buchholz's function)
100. E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_ω))}(420) using the fast-growing hierarchy (extended Buchholz's function)
101. S.U.P.I E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_{ω+1}))}(420) using the fast-growing hierarchy (extended Buchholz's function)
102. M.E.J.I S.U.P.I E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_ψ0(Ω)))}(420) using the fast-growing hierarchy (extended Buchholz's function)
103. G.I.J.I M.E.J.I S.U.P.I E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_ψ0(Ω_ψ0(Ω_ψ0(Ω))))}(420) using the fast-growing hierarchy (extended Buchholz's function)
104. E.V.E.R.Y.T.H.I.N.G G.I.J.I M.E.J.I S.U.P.I E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
105. S.U.P.E.R E.V.E.R.Y.T.H.I.N.G G.I.J.I M.E.J.I S.U.P.I E.V.E.R S.E.M.B.L.A.N.C.E M.U.L.T.I.V.E.R.S.E U.N.I.V.E.R.S.E O.M.I.C.R.O.N O.M.E.G.A C.O.L.L.A.P.S.I.N.G A.N.T.I.C E.P.S.I.L.O.N T.E.A.R.S D.E.S.T.R.U.C.T.I.V.E T.E.R.A G.I.G.A M.E.G.A S.U.P.E.R E.V.E.R.Y.T.H.I.N.G Pocket / S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{Ω+1})}(420) using the fast-growing hierarchy (extended Buchholz's function)
106. M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{Ω2})}(420) using the fast-growing hierarchy (extended Buchholz's function)
107. G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{Ωω})}(420) using the fast-growing hierarchy (extended Buchholz's function)
108. T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{Ω^2})}(420) using the fast-growing hierarchy (extended Buchholz's function)
109. D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{Ω^Ω})}(420) using the fast-growing hierarchy (extended Buchholz's function)
110. T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_{ψ1(Ω_2)})}(420) using the fast-growing hierarchy (extended Buchholz's function)
111. E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_2)}(420) using the fast-growing hierarchy (extended Buchholz's function)
112. A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_3)}(420) using the fast-growing hierarchy (extended Buchholz's function)
113. C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
114. O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_ψ0(Ω_Ω))}(420) using the fast-growing hierarchy (extended Buchholz's function)
115. O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
116. U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
117. M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
118. S..M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
119. E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
120. S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω_Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
121. M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Ω_Ω_Ω_Ω_Ω_Ω_Ω_Ω_Ω)}(420) using the fast-growing hierarchy (extended Buchholz's function)
122. M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E..M..M..S..E..S..M..U..O..O..C..A..E..T..D..T..G..M..S..E Pocket = f_{ψ0(Λ)}(420) = f_{ψ0(Ω_Ω_Ω_..._Ω_Ω_Ω)}(420) (419 Ω's) using the fast-growing hierarchy (extended Buchholz's function, where ψ0(Λ) denotes the countable limit of extended Buchholz's function, and Λ denotes the least omega fixed point)
*also shortened to M..M..S..S....T..G..M..S..E Pocket
123. Complicated = {69, 420 ((((1)(1)(1) 1) 1) 1) 2} in BEAF
124. Notaire = Sam(Σ(1919)) using busy beaver function and my Sam function
125. Swiftiesion = 10^1989
126. Swiftiesplexion = 10^10^1989
127. Maximal Swiftiesion = 10^^1989
128. Assiento = X^^Complicated & Swiftiesion in BEAF tetrational array-of function
129. Swifties-infused Notaire = Sam_{Swiftiesion}(Rayo(Complicated)) using my Sam function
130. Arapaima = Σ∞(Swiftiesplexion) (infinite time Turing machine)
131. Qami Qami = E2021#224 in Hyper-E notation
132. Yan Grrrls = E2023#^(180)(Qami Qami) in Extended Hyper-E notation
133. Delation = 12345679^^^81
134. Mitskiillion = {69, 420 ((((1)(1)(1) 1) 1) 1) 2} & Delation in BEAF array-of function
135. Fraction of Gratinees = Delation!2 in hyperfactorial array notation
136. Taser = E2304#{&}#2304 in Collapsing-E notation = E2304{#, #, 1, 2}2304 in hyper-hyper-extended cascading-E notation (see the comparison here)
137. Year 0 = {525, 525 (0, 0, 1) 2} in BEAF
138. HOT TO GO! = 32768 →{32768} 32768 in Peter Hurford's extension of chained arrows
139. Oho = 69 →{420} 69 in Peter Hurford's extension of chained arrows
140. UwU = FOOT^Oho(69420)
141. Powerful Mitskiillion = Sam^(Mitskiillion)(Notaire) using my Sam function
142. Super Powerful Mitskiillion = Sam^(Powerful Mitskiillion)(Mitskiillion) using my Sam function
143. Duper Powerful Mitskiillion = Sam^(Super Powerful Mitskiillion)(Powerful Mitskiillion) using my Sam function
144. Grrrliest Mitskiillion = Sam^(Yan Grrrls)(Arapaima) using my Sam function
145. Divine and Girly Mitskiillion = Sam[1](Powerful Mitskiillion) using my Sam function
146. Destructive and Powerful Mitskiillion = Sam[ω](Powerful Mitskiillion) using my Sam function
147. Let's deal with something derogative = FOOT^(Grrrliest Mitskiillion)(sin(UwU) in degrees)
148. Swiftiesions of Denarii = {10, {10, 1989, 2}, 1, 2} in BEAF
149. Flopover = 20736![[_{2304}768]] in hyperfactorial array notation
150. The snow glows white on a mountain tonight = Tar(Let's deal with something derogative) (*reference to the song "Let It Go" from the movie Frozen)
151. Portable Aversion = 365![1, 1, 1, 1, 2] in hyperfactorial array notation
152. Marvin Gaye = (Portable Aversion)![[_{[_{HOT TO GO!}(Swiftiesions of Denarii)]}(Flopover)]] in hyperfactorial array notation (*reference to the song "Marvin Gaye" by Charlie Puth.)
153. When the death metal music prevail to Armenian toddlers under five in certain isolated areas and cultural divisions during the clash = Tar^(Yan Grrrls)(Fraction of Gratinees) (*formerly called "Death metal music shall prevail to Armenian toddlers in another isolated culture" due to its potential ambiguity) [░]
154. Kawaiifish = 7[24] in Steinhaus-Moser Notation
155. Anti-folk sentiment to Montenegrins = Sam[ζ_0](D^(When the death metal music prevail to Armenian toddlers under five in certain isolated areas and cultural divisions during the clash)(69420)) using Loader's function and my Sam function [░]
156. Farinose Hands = Mega![1, 1, 1, 2] in hyperfactorial array notation
157. Thank You Swifties = E1989#{&^&}#35 in Collapsing-E notation
158. Vizierillion = 10^(3*10^(3*10^2475)+3)
159. Hyper-Active = (52!)!52 in hyperfactorial array notation
160. Drivers License = g_{ψ0(Ω_2)}(836) in the slow-growing hierarchy, using extended Buchholz's function
161. Tawny Dariole = g_{ψ0(Ω^Ω^Ω^Ω)}(175) in the slow-growing hierarchy, using extended Buchholz's function
162. Kuvasz = 1600![1(1601)2] in hyperfactorial array notation
163. Oblivion of Immortality = "The largest finite number that can be uniquely defined using no more than a Portable Aversion symbols in some K(Portable Aversion) system in some K2(Portable Aversion) 2-system in some K3(Portable Aversion) 3-system in some K4(Portable Aversion) 4-system in some .........K(Kuvasz)(Portable Aversion) Kuvasz-system where the number oblivion can be represented with one symbol (byte)." where a Km(n) m-system is an arbitrary well-defined system of mathematics that can generate K(m-1)(n) (m-1)-systems and which can be uniquely described in at most n symbols and a K1(n) system is an arbitrary well-defined system of mathematics which can be uniquely described in n symbols.
164. Even More Devastrating Dismentalized Oblivion = The largest finite number that can be uniquely defined using no more than "Dismentalize the Oblivion symbols in some K(Dismentalize the Oblivion) system in some K2(Dismentalize the Oblivion) 2-system in some K3(Dismentalize the Oblivion) 3-system in some K4(Dismentalize the Oblivion) 4-system in some .........K(Dismentalize the Oblivion)(Dismentalize the Oblivion) Dismentalize the Oblivion-system" with Oblivion of Immortality phases of Dismentalize the Oblivion cycles, where the number Dismentalize the Oblivion can be represented with one symbol (byte).", where a Km(n) m-system is an arbitrary well-defined system of mathematics that can generate K(m-1)(n) (m-1)-systems and which can be uniquely described in at most n symbols and a K1(n) system is an arbitrary well-defined system of mathematics which can be uniquely described in n symbols, "cycles" can be represented using complete first-level recursion-based diagonalization under the fundamental sequence "The True Cycles, Uttery True Cycles, ...", and "phases" can be represented using the complete second-level recursion-based diagonalization under the fundamental sequence "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ...".
Abridged definition: The largest finite number that can be uniquely defined using no more than Dismentalize the Oblivion symbols with Oblivion of Immortality phases, where "phases" can be represented using the complete second-level recursion-based diagonalization after "cycles", starting from "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ..."
That could allow such powerful processes to eventually beat my Sam function.
165. Multiversal and Powerful Oblivious Explosions = The largest finite number that can be uniquely defined using no more than "Even More Devastrating Dismentalized Oblivion symbols in some K(Even More Devastrating Dismentalized Oblivion) system in some K2(Even More Devastrating Dismentalized Oblivion) 2-system in some K3(Even More Devastrating Dismentalized Oblivion) 3-system in some K4(Even More Devastrating Dismentalized Oblivion) 4-system in some .........K(Even More Devastrating Dismentalized Oblivion)(Even More Devastrating Dismentalized Oblivion) Even More Devastrating Dismentalized Oblivion-system" with Even More Devastrating Dismentalized Oblivion levels of Even More Devastrating Dismentalized Oblivion phases of Even More Devastrating Dismentalized Oblivion cycles, where the number Even More Devastrating Dismentalized Oblivion can be represented with one symbol (byte).", where a Km(n) m-system is an arbitrary well-defined system of mathematics that can generate K(m-1)(n) (m-1)-systems and which can be uniquely described in at most n symbols and a K1(n) system is an arbitrary well-defined system of mathematics which can be uniquely described in n symbols, "cycles" can be represented using complete first-level recursion-based diagonalization under the fundamental sequence "The True Cycles, Uttery True Cycles, ...", "phases" can be represented using the complete second-level recursion-based diagonalization under the fundamental sequence "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ...", and "levels" can be represented using the complete third-level recursion-based diagonalization under the fundamental sequence "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, Even More Devastrating Dismentalized Oblivion, ...".
Abridged definition: The largest finite number that can be uniquely defined using no more than Even More Devastrating Dismentalized Oblivion symbols with Even More Devastrating Dismentalized Oblivion levels, where "levels" can be represented using the complete third-level recursion-based diagonalization after "phases" and "cycles", starting from "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ..."
166. Zzz = 2^63 - 1 = 9,223,372,036,854,775,807
167. Oblivious Fast-Fourier Transforms = The largest finite number that can be uniquely defined using no more than Multiversal and Powerful Oblivious Explosions symbols with Multiversal and Powerful Oblivious Explosions stages, where "stages" can be represented using the complete fourth-level recursion-based diagonalization after the third-level "levels", starting from "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ..."
Second-round abridged definition: The largest finite number that can be uniquely defined using no more than Multiversal and Powerful Oblivious Explosions symbols with Multiversal and Powerful Oblivious Explosions stages, using level 4 recursion-based diagonalization called "stages"
168. Utterly High Five Oblivion Platform = The largest finite number that can be uniquely defined using no more than Oblivious Fast-Fourier Transforms symbols with Oblivious Fast-Fourier Transforms classes, where "classes" can be represented using the complete fifth-level recursion-based diagonalization after the fourth-level "stages", starting from "The True Cycles, Uttery True Cycles, Dismentalize the Oblivion, ..."
Second-round abridged definition: The largest finite number that can be uniquely defined using no more than Oblivious Fast-Fourier Transforms symbols with Oblivious Fast-Fourier Transforms classes, using level 5 recursion-based diagonalization called "classes"
169. Pink Entrails = L(8675309) using Latin square function
170. Monstrous Jennies = 867[0 {0, 1} 1]5309 in Phenol notation
171. Interage = 175[1, 0, 2]76923 in Phenol notation
172. Yulan Infusion = 99[1, 0, 0, 1]Interage in Phenol notation
173. Aboriginal Jacket = 420[1, 0, 0, 0, 0, 1]Yulan Infusion in Phenol notation
174. Cleavage of Neuroids = 1337[1 {1} 2]Aboriginal Jacket in Phenol notation
175. Taileron = 142857[76923] in Steinhaus-Moser Notation
176. Fansite of Ukrainian Swifties = {1597, 1597 ((1)(1)(1) 1) 2} in BEAF
177. Fansite of Crimean Swifties = {1597, 1597, 2 ((1)(1) 0, 0, 2) 2} in BEAF
178. Mokita = E[7]7#^#^#^#####17 in Cascading-E notation
179. Yaqona = f_{ψ0(Ω_(ψ2(Ω_4)))}(1184) in the fast-growing hierarchy, using extended Buchholz's function
180. Evaporated Corpse = A(220, 284) in Ackermann function
181. Stained Ouija = D^1729(10) using Loader's D function
182. Havering = 112![7] in hyperfactorial array notation
183. Sandcastles = D(2147483647) using Loader's D function
184. Pactionism = 5,631,351,470,947,265,625 = 75^10
185. Sight of Rodrigian's Vampires = 129*2^1872 ≈ 4.352528196819 × 10^565 (*reference to the song "Vampire" by Olivia Rodrigo)
186. Flection = A^134217728(5) where A(n) = (n!)^(n^27)
187. Stop holding on to the Q without U = Q(99) where U(n) = 23^(n^2) and Q(n) = (U(n^7))!1 using hyperfactorial array notation = (23^99^14)!1 (*a reference to one of Scrabble's strategies)
188. Woo the Flavor of Ammonium Nitrate = cg(cg(144,000))
189. Cyanide! Cyanide! Cyanide! = 987,654,321![1(1)[_{2}1, 1, 1, 2]] = Cyanide![1(1)[_{2}1, 1, 1, 2]]
190. Call Me Maneater = s(4, 4 {1 {1 {3} 2} 2} 2) in strong array notation
191. Wuxia of Ataraxia = E[65]65#{&^#}#65 in Collapsing-E notation
192. Lewisite = Sam^69(420) using my Sam function
193. Dissolved Aerolite = {5, 4, 4, 3 (4, 2) 2} in BEAF
194. Mirepoix = 12288[1{1 \^(1 \^(1 \^(1 \^(1 \ 2) 2) 2) 2) 2}2]12288 in DeepLineMadom's array notation
195. LoveDeath = SCG^1521(7)
196. The Baltic national anthems' values for children under the age of five are downright awful, not only since they are considered to be unfair, immoral, and disrespectful for youngest children in general, they also violate the social media platforms' terms of use that would likely result in an imprisonment. Legal guardians should definitely advocate preventing the abusive and profane reaction to such solemn national anthems or otherwise lead to an intensified debate regarding the regional symbols' strict regulation. = Sam{Omega one of chess}^5(LoveDeath + (Cyanide! Cyanide! Cyanide!)^(Anti-folk sentiment to Montenegrins)) using my Sam function [‡‽]
Short name: The ugly and awful Baltic national anthems' values for children under five
Old names:
Old name: "Lithuanian children at all ages up to 18 should ABSOLUTELY stop exposing to the Lithuanian national anthem effectively and keeping the anthem untouched because it's unfair, immoral, disrespectful, and unlawful in the particular social media platforms, SERIOUSLY!!!" (now expanded to the whole region)
Older name: "I hate the Lithuanian national anthem because it's unfair and immoral in multiple social media platforms"
Old short name: "Stop the Lithuanian national anthem for children below 18, seriously!"
The old names looked harmful at first glance, but they are actually referenced to some nonsensical advocative scenarios in a very specific lesser-globalized country or region in the world, so they are not considered to be harmful as well, just like with the current names.
[‡‽] This name is referenced to the hypothetical debate regarding extreme stakes, criticisms, and political risks involving decision-making against the value of the solemn national anthems of the Baltic states value for native children under the age of five in that region, which is a heavy scenario in a very specific lesser-globalized region in Europe, namely the Baltic states (Lithuania, Latvia, and Estonia). Also, since the name is referenced to a children's legal caution against heavy symbolisms, it is not considered to be harmful at all.
Previously listed at #184, later renamed to "Pactionism". I previously overlooked about the ambiguity of the name.
Notes:
"░" = Reference to the hypothetical, advocative scenarios in the very specific small regions or countries around the world, they are not considered to be harmful.