普通投资者类似于电子,操纵者类似于原子核
海森堡飞也似地跑回研究所,埋头一阵苦算,最后他得出了一个公式:
△p×△q > h/2π
△p和△q分别是测量p和测量q的误差,h是普朗克常数。海森堡发现,测量p和测量q的误差,它们的乘积必定要大于某个常数。如果我们把p测量得非常精确,也就是说△p非常小,那么相应地,△q必定会变得非常大,也就是说我们关于q的知识就要变得非常模糊和不确定。反过来,假如我们把位置q测得非常精确,p就变得摇摆不定,误差急剧增大
△p 价格差,△q成交量
△E×△t > h/2π
V=△p /△t 价格变化速度 价格对人影响事迹度,价格差一定是, 时间越长,影响越小,时间越短,影响越大。影响度一定时,时间越大,价格变化越大。时间差一定是, 差格变化越大,对人心理影响越大
λ= h/mv m 人心理稳定度。
E=hv v 价格变化的频率 E 投资者资金变化量,Wi 资金量。对同一个投资者来说资金量越大,交易越频繁
一个电子必须由粒子和波两种角度去作出诠释,任何单方面的描述都是不完全的。只有粒子和波两种概念有机结合起来,电子才成为一个有血有肉的电子,才真正成为一种完备的图像。没有粒子性的电子是盲目的,没有波动性的电子是跛足的。
“任何时候我们观察电子,它当然只能表现出一种属性,要么是粒子要么是波。声称看到粒子-波混合叠加的人要么是老花眼,要么是纯粹在胡说八道。但是,作为电子这个整体概念来说,它却表现出一种波-粒的二像性来,它可以展现出粒子的一面,也可以展现出波的一面,这完全取决于我们如何去观察它。我们想看到一个粒子?那好,让它打到荧光屏上变成一个小点。看,粒子!我们想看到一个波?也行,让它通过双缝组成干涉图样。看,波!”
这里的关键是我们‘如何’观察它,而不是它‘究竟’是什么
关键是操纵者如何操纵它,而不是它究竟’是什么
我们唯一能说的,是在某种观察方式确定的前提下,它呈现出什么样子来
玻尔的“互补原理”(Complementary Principle)连同波恩的概率解释,海森堡的不确定性,三者共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响我们对于整个宇宙的终极认识。
石头是处在一个绝对的,客观的外部世界中,而我——观测者——对这个世界是没有影响的,至少,这种影响是微小得可以忽略不计的。你测得的数据是多少,石头的“客观重量”就是多少。但量子世界就不同了,我们已经看到,我们测量的对象都是如此微小,以致我们的介入对其产生了致命的干预。我们本身的扰动使得我们的测量中充满了不确定性,从原则上都无法克服。采取不同的手段,往往会得到不同的答案,它们随着不确定性原理摇摇摆摆,你根本不能说有一个客观确定的答案在那里。在量子论中没有外部世界和我之分,我们和客观世界天人合一,融和成为一体,我们和观测物互相影响,使得测量行为成为一种难以把握的手段。
幸运的是,我们都记得h非常小,只有6.626×10^-34焦耳秒,那么假如△p和△q的量级差不多,它们各自便都在10^-17这个数量级上。我们现在可以安慰一下不明真相的群众:事情并不是那么糟糕,这种效应只有在电子和光子的尺度上才变得十分明显。对于汤米玩的皮球,10^-17简直是微不足道到了极点,根本就没法感觉出来。汤米可以安心地拍他的皮球,不必担心因为测不准它的位置而把它弄丢了。
哥本哈根解释的基本内容,全都围绕着三大核心原理而展开。我们在前面已经说到,首先,不确定性原理限制了我们对微观事物认识的极限,而这个极限也就是具有物理意义的一切。其次,因为存在着观测者对于被观测物的不可避免的扰动,现在主体和客体世界必须被理解成一个不可分割的整体。没有一个孤立地存在于客观世界的“事物”(being),事实上一个纯粹的客观世界是没有的,任何事物都只有结合一个特定的观测手段,才谈得上具体意义。对象所表现出的形态,很大程度上取决于我们的观察方法。对同一个对象来说,这些表现形态可能是互相排斥的,但必须被同时用于这个对象的描述中,也就是互补原理。
最后,因为我们的观测给事物带来各种原则上不可预测的扰动,量子世界的本质是“随机性”。传统观念中的严格因果关系在量子世界是不存在的,必须以一种统计性的解释来取而代之,波函数ψ就是一种统计,它的平方代表了粒子在某处出现的概率。当我们说“电子出现在x处”时,我们并不知道这个事件的“原因”是什么,它是一个完全随机的过程,没有因果关系
可以说决定论的兴衰浓缩了整部自然科学在20世纪的发展史。科学从牛顿和拉普拉斯的时代走来,辉煌的成功使它一时得意忘形,认为它具有预测一切的能力。决定论认为,万物都已经由物理定律所规定下来,连一个细节都不能更改。过去和未来都像已经写好的剧本,宇宙的发展只能严格地按照这个剧本进行,无法跳出这个窠臼
现在让我们来做一个思维实验,想象我们有一台仪器,它每次只发射出一个电子。这个电子穿过双缝,打到感光屏上,激发出一个小亮点。那么,对于这一个电子,我们可以说些什么呢?很明显,我们不能预言它组成类波的干涉条纹,因为一个电子只会留下一个点而已。事实上,对于这个电子将会出现在屏幕上的什么地方,我们是一点头绪都没有的,多次重复我们的实验,它有时出现在这里,有时出现在那里,完全不是一个确定的过程。
不过,我们经过大量的观察,却可以发现,这个电子不是完全没有规律的:它在某些地方出现的可能性要大一些,在另一些地方则小一些。它出现频率高的地方,恰恰是波动所预言的干涉条纹的亮处,它出现频率低的地方则对应于暗处。现在我们可以理解为什么大量电子能组成干涉条纹了,因为虽然每一个电子的行为都是随机的,但这个随机分布的总的模式却是确定的,它就是一个干涉条纹的图案。这就像我们掷骰子,虽然每一个骰子掷下去,它的结果都是完全随机的,从1到6都有可能,但如果你投掷大量的骰子到地下,然后数一数每个点的数量,你会发现1到6的结果差不多是平均的。
回顾一下量子论在发展过程中所经历的两条迥异的道路是饶有趣味的。第一种办法的思路是直接从观测到的原子谱线出发,引入矩阵的数学工具,用这种奇异的方块去建立起整个新力学的大厦来。它强调观测到的分立性,跳跃性,同时又坚持以数学为唯一导向,不为日常生活的直观经验所迷惑。但是,如果追究根本的话,它所强调的光谱线及其非连续性的一面,始终可以看到微粒势力那隐约的身影。这个理论的核心人物自然是海森堡,波恩,约尔当,而他们背后的精神力量,那位幕后的“教皇”,则无疑是哥本哈根的那位伟大的尼尔斯•玻尔。这些关系密切的科学家们集中资源和火力,组成一个坚强的战斗集体,在短时间内取得突破,从而建立起矩阵力学这一壮观的堡垒来。
而沿着另一条道路前进的人们在组织上显然松散许多。大致说来,这是以德布罗意的理论为切入点,以薛定谔为主将的一个派别。而在波动力学的创建过程中起到关键的指导作用的爱因斯坦,则是他们背后的精神领袖。但是这个理论的政治观点也是很明确的:它强调电子作为波的连续性一面,以波动方程来描述它的行为。它热情地拥抱直观的解释,试图恢复经典力学那种形象化的优良传统,有一种强烈的复古倾向,但革命情绪不如对手那样高涨。打个不太恰当的比方,矩阵方面提倡彻底的激进的改革,摒弃旧理论的直观性,以数学为唯一基础,是革命的左派。而波动方面相对保守,它强调继承性和古典观念,重视理论的形象化和物理意义,是革命的右派。这两派的大战将交织在之后量子论发展的每一步中,从而为人类的整个自然哲学带来极为深远的影响。
市场的最终状态的平均值是确定的,但最终状态本身是不确定的,是一个绕平均值概率波动。由目前状态至最终状态本身路径也是不确定的,是市场内交易者相互交易的结果。
混沌动力学是复杂性科学的一个重要分支,也是近三十年来的一个热门学科。混沌(Chaos)是指发生在确定性系统中的貌似随机的不规则运动。一个确定性理论描述的系统,其行为却表现为不确定性、不可重复、不可预测,这就是混沌现象
而混沌理论则研究如何把复杂的非稳定性事件控制到稳定状态的方法初值敏感性、分形(fractals)和奇异吸引子。
初值敏感性
初值敏感性(蝴蝶效应):混沌现象揭示了现实世界不可琢磨的复杂性,从而给科学决定论以打击。混沌理论指出的某些系统,只要初始条件稍有偏差或微小的扰动,则会使得系统的最终状态出现巨大的差异。因此混沌系统的长期演化行为是不可预测的。这一点常常被通俗地称为蝴蝶效应。
分形
分形(fractals),是著名数学家Mandelbrot创立的分形几何理论中的重要概念。意为系统在不同标度下具有自相似性质。自相似性意味着递归,即在一个模式内部还有一个模式,可产生出具有结构和规则的隐蔽的有序模式。
奇异吸引子
吸引子是系统被吸引并最终固定于某一状态的性态。有三种不同的吸引子控制和限制物体的运动程度:点吸引子、极限环吸引子和奇异吸引子(即混沌吸引子或洛伦兹吸引子)(如左图)。点吸引子与极限环吸引子都起着限制的作用,使系统产生静态的、平衡的特征,故也称收敛性吸引子。奇异吸引子使系统偏离收敛吸引子的区域,诱发不同形态。它具有复杂的拉伸、折迭与伸缩的结构,可以使指数型发散保持在有限的空间中;它使系统变为非预设模式,从而使系统成为不可预测性的。
当然,他也想到,这说明公式的成功绝不仅仅是侥幸而已。这说明了,在那个神秘的公式背后,必定隐藏着一些不为人们所知的秘密。必定有某种普适的原则假定支持着这个公式,这才使得它展现出无比强大的力量来。
有人认为市场是无序的,不可预测的。但可用内在价值的方法获利
技术分析法的假设是市场是透明的,投资者都是理性的, 其行为可以通过技术分析的方法加以预测。
市场是分层的。上层投资者可以操纵下层投资者。下层投资者对上层投资者的行为进行猜测, 并依据其猜测进行涨杀跌。
1/2 mv^2 = hν– P 1/2 mv^2是激发出电子的最大动能,也就是我们说的,能买到“多好”的货物。hν是单个量子的能量,也就是你总共有多少钱。P是激发出电子所需要的最小能量,也就是“入场费”。所以这个方程告诉我们的其实很简单:你能买到多好的货物取决于你的总资金减掉入场费用。
市场是分层可控的。市场由不同层级的子市场构成。下级市场的走势由上级市场决定权。顶层市场决定整个市场的走势。除顶层和底层市场外,每一级市场都有价格制定者和追随者。上级市场的追随者是下级市场的制定者。底层市场的追随者不能决定价格。顶层市场的价格制定者决定整个市场的价格水平。
市场价格制定者决定本级市场的走势及平均水平。价格追随者通过对本级市场的走势预测进行交易。其行为具有量子化特征。市场的原子模型
波动的波长决定能打出什么样的投资者
波动的幅度决定能打出多少投资者
应当说这是一个相当困难的任务。如何推翻麦氏理论还在其次,关键是新理论要能够完美地解释原子的一切行为
在这里,我们不妨还是回顾一下玻尔模型的一些基本特点。它基本上是卢瑟福行星模型的一个延续,但是在玻尔模型中,一系列的量子化条件被引入,从而使这个体系有着鲜明的量子化特点。
首先,玻尔假设,电子在围绕原子核运转时,只能处于一些“特定的”能量状态中。这些能量状态是不连续的,称为定态。你可以有E1,可以有E2,但是不能取E1和E2之间的任何数值。正如我们已经描述过的那样,电子只能处于一个定态中,两个定态之间没有缓冲地带,那里是电子的禁区,电子无法出现在那里。
投资者对股票走势的判断围绕操纵者制定的走势上下波动。这些判断只能处于一些特定的利润态中。这些利润态是不连续的, 称为定态。你可以有E1, 或E2, 但不能取E1和E2之间的任何数值. 在价格走势图上的成交位置是不连续的,
但是,玻尔允许电子在不同的能量态之间转换,或者说,跃迁。电子从能量高的E2状态跃迁到E1状态,就放射出E2-E1的能量来,这些能量以辐射的方式释放,根据我们的基本公式,我们知道这辐射的频率为ν,从而使得E2-E1 = hν。反过来,当电子吸收了能量,它也可以从能量低的状态攀升到一个能量较高的状态,其关系还是符合我们的公式。我们必须注意,这种能量的跃迁是一个量子化的行为,如果电子从E2跃迁到E1,这并不表示,电子在这一过程中经历了E2和E1两个能量之间的任何状态。如果你还是觉得困惑,那表示连续性的幽灵还在你的脑海中盘旋
每一个可能的能级,都代表了一个电子的运行轨道,这就好比离地面500公里的卫星和离地面800公里的卫星代表了不同的势能一样。当电子既不放射也不吸收能量的时候,它就稳定地在一条轨道上运动。当它吸收了一定的能量,它就从原先的那个轨道消失,神秘地出现在离核较远的一条能量更高的轨道上。反过来,当它绝望地向着核坠落,就放射出它在高能轨道上所搜刮的能量来。这些能量以利润率的方式释放。
但是 交易能在不同的利润态中转换。被操纵者可从能量高的E2状态跃迁到E1状态,就放射出E2-E1的能量来反过来,当电子吸收了能量,它也可以从能量低的状态攀升到一个能量较高的状态,其关系还是符合我们的公式
原子内带正电的密实部分集中于一个很小的核,带负电的电子分布于核外,中性原子的核外电子数等于原子序数Z
股票的价格走势由价格形成期的极少数成交量决定。价格形成期的交易主要由价格操纵者进行。操纵者和被操纵者之间的交易发生于价格稳定期,期间的成交量远远大于价格形成期的成交量
From these facts Born drew the following conclusion: with each photon is
associated a wave iv , called the probability amplitude or simply amplitude, whose
modulus squared I tif(x)1 2 gives the probability of finding the particle at x. [Strictly
speaking, we must not refer to I v(x)I 2 as the probability for a given x, but rather
as the probability density at x since x is a continuous variable. These subtleties can,
however, wait.] The entire experiment may be understood in terms of this hypothesis
as follows. Every incoming photon of energy E and momentum p has a wave function
iv associated with it, which is a plane wave with co=E/h and k=p/h. This wave
interferes with itself and forms the oscillating pattern tif(x)1 2 along AB, which gives
the probability that the given photon will arive at x. A given photon of course arrives
at some definite x and does not reveal the probability distribution. If, however, we
wait till several photons, all described by the same tit, have arrived, the number at
any x will become proportional to the probability function I ty(x)1 2 . Likewise, if an
intense (macroscopic) monochromatic beam is incident, many photons, all described
by the same wave and hence the same probability distribution, arrive at the same
time and all along the line AB. The intensity distribution then assumes the shape of
the probability distribution right away and the energy flow seems continuous and in
agreement with the predictions of classical electromagnetic theory.
All the investors in the same level has the same state |w after the trade