A Matemática e o dinheiro
Muita gente pensa que a Matemática, em relação ao dinheiro, só serve para fazer troco e para calcular o total a pagar no caixa. Não é bem assim. Sem a Matemática, não conseguiríamos entender nossos contracheques, calcular nossos aumentos de salário, perceber os produtos que aumentaram demasiadamente de preço etc...
Neste tópico, vamos conhecer as porcentagens, os juros compostos e diversas outras coisas que fazem parte do nosso dia-a-dia, como aumentos e descontos.
Principais Conceitos
Suponhamos que duas empresas, a empresa “A” e a empresa “B”, tenham a receber R$ 100 cada. A empresa “A” deve receber seus R$ 100 em 30 dias e a empresa “B”, em 360 dias. Será que os R$ 100 da empresa “A” valem o mesmo que os R$ 100 da empresa “B”? Claro que não! Os R$ 100 da empresa “A” valem mais do que os R$ 100 da empresa “B”. Isto porque o valor do dinheiro varia no tempo. É o chamado “valor temporal” do dinheiro. A matemática financeira é a ciência que estuda o valor do dinheiro no tempo.
Em matemática financeira, os seguintes termos possuem os seguintes significados:
Principal, Capital Inicial ou Valor Presente
Chamamos de principal, capital inicial ou valor presente à quantia tomada emprestada ou investida e sobre a qual incidirão juros.
Juros
Chamamos de juros à remuneração recebida por quem aplicou ou paga por quem tomou dinheiro emprestado. Os juros são, portanto, sempre expressos em unidades monetárias. Se, por exemplo, uma pessoa aplicou R$ 100 em um papel de renda fixa e, ao final de um certo tempo, resgatou este investimento por R$ 110, os juros recebidos foram R$ 10.
Montante, Valor de Resgate ou Valor Futuro
Chamamos de montante à soma do principal mais juros. No exemplo acima, o montante recebido pelo aplicador foi R$ 110, ou seja, a soma do principal de R$ 100 com os juros de R$ 10.
Taxa de Juros
Chamamos de taxa de juros à relação entre os juros recebidos ou pagos em um determinado período de tempo e o principal q eu deu origem a estes juros. Assim, se um investidor aplicou R$ 100 em uma aplicação de renda fixa e recebeu juros de R$ 10 ao final de um ano, a taxa de juros deste investimento foi 10% ao ano. Vê-se assim que a taxa de juros está sempre relacionada a um período, seja ele o dia, o mês, o ano, etc. A taxa de juros pode ser expressa em notação percentual (10% ao ano, por exemplo) ou em notação decimal (0,10 ao ano, por exemplo). Estas duas expressões são, evidentemente, equivalentes já que 10÷100 = 0,10.
Os juros podem ser capitalizados no regime de juros simples, no regime de juros contínuos ou no regime de juros compostos. No Brasil, apenas os regimes de juros simples e de juros compostos são usados.
Juros Simples
No regime de juros simples, os juros incidem exclusivamente sobre o principal.
Juros Compostos
No regime de juros compostos, ao final de cada período de capitalização, os juros se incorporam ao principal e passam a render juros também.
Período de Capitalização
Chamamos de período de capitalização ao tempo que, uma vez decorrido, faz com que os juros sejam devidos ou incorporados ao principal e passem, por sua vez, a render juros também. A taxa de juros é sempre relacionada a um determinado período de capitalização. Assim, quando uma taxa é anual (10% a.a., por exemplo), o período de capitalização é o ano; quando a taxa é mensal (1% a.m., por exemplo), o período de capitalização é o mês, e assim por diante. Quando o período a que se refere a taxa de juros é diferente do período de capitalização, isto deve ser mencionado, tal como na expressão “taxa de 10% ao ano, capitalizados mensalmente”, e assim por diante.
Taxa Efetiva
Chamamos de taxa efetiva àquela cujo período de capitalização é igual à unidade de tempo na qual está expresso o período da operação. São exemplos de taxas efetivas 12% ao ano capitalizados anualmente, 3% ao mês capitalizados mensalmente, e assim por diante.
Taxa Nominal
Chamamos de taxa nominal àquela expressa em uma unidade de tempo diferente da unidade de tempo dos períodos de capitalização. As taxas nominais são geralmente fornecidas em termos anuais. São exemplos de taxas efetivas 12% ao ano capitalizados mensalmente, 2% ao mês capitalizados diariamente, e assim por diante.Taxas Proporcionais Duas ou mais taxas de juros são ditas proporcionais quando ao serem aplicadas a um mesmo principal durante um mesmo prazo de tempo no regime de juros simples, produzem um mesmo montante. Vê-se, portanto, que o conceito de taxas proporcionais está estreitamente ligado ao regime de juros simples. São exemplos de taxas proporcionais: 1% ao mês e 12% ao ano.
Taxas Equivalentes
Duas ou mais taxas de juros são ditas equivalentes quando ao serem aplicadas a um mesmo principal durante um mesmo prazo de tempo no regime de juros compostos, produzem um mesmo montante. Vê-se, portanto, que o conceito de taxas equivalentes está estreitamente ligado ao regime de juros compostos. São exemplos de taxas equivalentes: 1% ao mês e 12% ao ano.