https://machinelearningmastery.com/configure-encoder-decoder-model-neural-machine-translation/Intel
Intel AI Academy : https://software.intel.com/en-us/ai-academy
Access Instructional Material by applying on the link below :
Intel AI Academy for Professors - https://software.intel.com/en-us/ai-academy/professors
Intel Student Ambassador Program - https://software.intel.com/en-us/ai-academy/ambassadors
Intel Student Kits - https://software.intel.com/en-us/ai-academy/students/kits
Intel Software Tools and SDKs - https://software.intel.com/en-us/ai-academy/tools
Intel Dev Cloud Access Request - https://software.intel.com/en-us/ai-academy/tools/devcloud
GAN
Conditional Generative Adversarial Nets by Mehdi Mirza https://arxiv.org/pdf/1411.1784.pdf
Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola Jun-Yan Zhu Tinghui Zhou Alexei A. Efros https://arxiv.org/pdf/1611.07004.pdf
Generative Adversarial Nets Ian J. Goodfellow, Jean Pouget-Abadie∗ , Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair† , Aaron Courville, Yoshua Bengio‡ https://arxiv.org/pdf/1406.2661.pdf
machine translation
https://machinelearningmastery.com/configure-encoder-decoder-model-neural-machine-translation/
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation https://arxiv.org/abs/1609.08144
Improved Neural Machine Translation with SMT Features. (English to Chinese paper handle unk, out of vocabulary problem oov)
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/
https://pdfs.semanticscholar.org/2701/f0782782ce409473a26432b8cef7e4b224d0.pdf (MSC thesis: Towards efficient Neural Machine Translation for Indian Languages)
word embedding https://en.wikipedia.org/wiki/Word2vec
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b
Ne
capsule network
(MATRIX CAPSULES WITH EM ROUTING ) https://openreview.net/pdf?id=HJWLfGWRb
(Dynamic Routing Between Capsules) https://arxiv.org/pdf/1710.09829.pdf
https://hackernoon.com/what-is-a-capsnet-or-capsule-network-2bfbe48769cc
https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
SFM using Neural net
3D-R2N2: Single or Multiple View 3D Object reconstruction https://arxiv.org/pdf/1604.00449.pdf
SFM net: learning structure and motion from video https://arxiv.org/pdf/1704.07804.pdf
SE3-net: Learning Rigid Body Motion using Deep Neural Networks https://arxiv.org/pdf/1606.02378.pdf
IMU and Kalman
https://www.kudan.eu/kudan-news/an-introduction-to-slam/ 2016 with videos, a good introduction to slam
http://www.ece.ust.hk/~eeshaojie/ismar2017peiliang.pdf (Monocular Visual-Inertial State Estimation for Mobile Augmented Reality) 2017, HKUST, slam sfm+ Karlamn
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3649364/ (Extended Kalman Filter-Based Methods for Pose Estimation Using Visual, Inertial and Magnetic Sensors 2013, pose using checker board)
http://appliedmaths.sun.ac.za/~wbrink/students/LHughes2014.pdf (Enhancing Mobile Camera Pose Estimation Through the Inclusion of Sensors, msc thesis, pose using checker board, p79)
http://openaccess.thecvf.com/content_cvpr_workshops_2015/W12/papers/Tiefenbacher_Off-the-Shelf_Sensor_Integration_2015_CVPR_paper.pdf 9using passive markers for pose estimation, UKF)
http://www.mdpi.com/1424-8220/17/10/2164/htm (Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter, sensor 2017, cityu HK, object recognition known model (section 3.2)., EKF, ransac)object recognition, known model,EKF
https://arxiv.org/ftp/arxiv/papers/1411/1411.2335.pdf (AN IMPROVED TRACKING USING IMU AND VISION FUSION FOR MOBILE AUGMENTED REALITY APPLICATIONS 2014) EKF, CAD known model to get pose , mixed with IMU complimentary filter
https://link.springer.com/content/pdf/10.1007%2Fs10846-010-9490-z.pdf (Fusion of IMU and Vision for Absolute Scale Estimation in Monocular SLAM 2011) Klein and Murray’s SLAM algorithm- bundle adjustment, plus IMU (different sampling scheme)
http://www.control.isy.liu.se/research/reports/LicentiateThesis/Lic1370.pdf (Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors 2008, phd thesis) p12, may be known model
http://www.mit.edu/~shayegan/files/vision_based_pose_estimation_of_quads.pdf (Vision-Based Pose Estimation of Quadcopters using UKFs2014) posit, knwon model, ukf for Quadcopters
https://venturi.fbk.eu/wp-content/uploads/2011/10/PorRicCia_EESMS_2012.pdf (Visual-inertial Tracking on Android for Augmented Reality Applications 2012 )vision using G. Klein and D. Murray, “Parallel tracking and mapping on a cameraphone,” in Proc. Eigth IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR’09), 2009
http://jultika.oulu.fi/files/nbnfioulu-201609142782.pdf (POSE ESTIMATION USING TWO LINE CORRESPONDENCES AND GRAVITY VECTOR FOR IMAGE RECTIFICATION msc thesis 2016) line correspondences
khwong
http://www.cse.cuhk.edu.hk/%7Ekhwong/j2004_IEEE_chang_MM_xlowe_draft.pdf
http://www.cse.cuhk.edu.hk/%7Ekhwong/j2004_IEEE_yu_SMC_B_kalman_draft.pdf
http://www.cse.cuhk.edu.hk/~khwong/c174_pt_line_trifocal_kalman.pdf
http://www.cse.cuhk.edu.hk/~khwong/c174_pt_line_trifocal_kalman.pdfPose estaimtion
POSE estimation
http://home.in.tum.de/~grembowi/ar2004_05/3dPoseEstimation_presentation.pdf
https://pdfs.semanticscholar.org/8dc2/67b5e0e83aa293f1595482ff52547db808f3.pdf the original paper ModelBased Object Pose in 25 Lines of Code
A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications http://projekter.aau.dk/projekter/files/14427578/A_Comparison_of_2D-3D_Pose_Estimation_Methods.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-642-02230-2.pdf
http://home.in.tum.de/~grembowi/ar2004_05/3dPoseEstimation_elaboration.pdf a tutorial on pose estimation method including posit
code
dataset
http://www.lrec-conf.org/proceedings/lrec2014/pdf/774_Paper.pdf
data science
big-data-35-brilliant-and-free-data-sources
text mining
http://tidytextmining.com/sentiment.html
face track by C. kam
Current work
http://opus.lingfil.uu.se/TED2013.php
Vuforia VR/AR : https://developer.vuforia.com/
aruco markers: https://www.youtube.com/watch?v=dNKHZW1qLCs
Deep Learning and Kalman filtering
Deep Learning Book. http://www.deeplearningbook.org/
Kalman matlab toolbox Aalto University:EKF/UKF Toolbox for Matlab V1.3, documentation.pdf, http://becs.aalto.fi/en/research/bayes/ekfukf/
>download and run \ekfukf-master\demos\bot_demo, comment , set silent =1 in bot_demo_all.m or uks_bot_dem.m. remove pause in bot_h.m
1. 3-D and RNN http://3d-r2n2.stanford.edu/ 2. SLAM and RNN https://arxiv.org/pdf/1701.08376.pdf 3. Bayesian filter and RNN http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
Windows: How to use tensor flow in PC-windows, Install Mobaxterm, so your pc has xterm to use the GPU machine xxxyy
$CUDA_VISIBLE_DEVCES=5;6;7 tensorflow minst_cnn.py
Editing $subl file.py %sublime for xterm editing Or $vim file.py # text mode only
Linux:$ssh –XC xxxxyy.cse.cuhk.edu.hk, To use tensorflow as usual
paper studying
1st week from 7 Aug 2017
2nd week from 14 July 2017
http://www.aclweb.org/anthology/N16-1030 (LSTM: neural architecture for named entity regression)
http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf (learning hierarchical features for scene labeling)
https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf Conditional random field
3rd week from 21 Aug 2017
Papers:
Fully convolutional networks for semantic segmentation by J Long, E Shelhamer, T Darrell
tutorials
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/terryum/awesome-deep-learning-papers
Data
http://archive.ics.uci.edu/ml/index.php (UC Irvine Machine Learning Repository)
tutorial:
https://theneuralperspective.com/tag/tutorials/
rnn-encoder-decoder
http://anie.me/rnn-encoder-decoder/ a good guide
text generation using lstm
Backpropagagtion
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ (good numerical examples)
https://medium.com/@erikhallstrm/backpropagation-from-the-beginning-77356edf427d good backpro tutorial ,
RNN encoder-decoder
LSTM tutorial ppt
http://www.iro.umontreal.ca/~pift6266/A07/documents/lstm.pdf (LSTM for speech and music ,with good diagrams describing the functions of gates)
LSTM papers
http://www.bioinf.jku.at/publications/older/2604.pdf (the original 1997 paper)
http://www.felixgers.de/papers/phd.pdf (the forget gate thesis, 2001)
https://arxiv.org/pdf/1503.04069.pdf (search space odyssey)
http://karpathy.github.io/2015/05/21/rnn-effectiveness/ (good) The Unreasonable Effectiveness of Recurrent Neural Networks
http://blog.echen.me/2017/05/30/exploring-lstms/ by Edwin Chen
softmax (cross-entropy loss)
https://www.quora.com/Is-the-softmax-loss-the-same-as-the-cross-entropy-loss (difference between softmax loss and cross-entropy loss)
"However, people use the term "softmax loss" when referring to "cross-entropy loss" and because you know what they mean, there's no reason to annoyingly correct them."
https://stats.stackexchange.com/questions/79454/softmax-layer-in-a-neural-network stated clearly the fomulars for backprog
https://www.ics.uci.edu/~pjsadows/notes.pdf (full derivation and include back propagation formulas)
http://peterroelants.github.io/posts/neural_network_implementation_intermezzo02/
vanishing gradient proboem
https://ayearofai.com/rohan-4-the-vanishing-gradient-problem-ec68f76ffb9b
sequence to sequence model
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537
https://google.github.io/seq2seq/nmt/
https://chunml.github.io/ChunML.github.io/project/Sequence-To-Sequence/ (by Trung Tran)
https://github.com/farizrahman4u/seq2seq code-theory iKeras
https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa (good tutorial and numerical example )
attention
parameters of lstm
https://datascience.stackexchange.com/questions/10615/number-of-parameters-in-an-lstm-model
https://www.quora.com/What-is-the-meaning-of-%E2%80%9CThe-number-of-units-in-the-LSTM-cell
https://www.quora.com/In-LSTM-how-do-you-figure-out-what-size-the-weights-are-supposed-to-be
http://kbullaughey.github.io/lstm-play/lstm/ (batch size example)
feedback (back prop)
https://medium.com/@aidangomez/let-s-do-this-f9b699de31d9
http://neuralnetworksanddeeplearning.com/chap2.html (How the backpropagation algorithm works)
Numerical examples
https://blog.aidangomez.ca/2016/04/17/Backpropogating-an-LSTM-A-Numerical-Example/
https://karanalytics.wordpress.com/2017/06/06/sequence-modelling-using-deep-learning/
http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/
visualize LSTM
LSTM code
http://nicodjimenez.github.io/2014/08/08/lstm.html S9imple LSTM python-code , formulas and theory)
http://blog.csdn.net/u010866505/article/details/74910525 (MATLAB)
https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/ (python)
http://machinelearningmastery.com/how-to-use-an-encoder-decoder-lstm-to-echo-sequences-of-random-integers/ Keras: How to use an Encoder-Decoder LSTM to Echo Sequences of Random Integers
LSTM RNN tutorial
tutorial
http://people.idsia.ch/~juergen/lstm2003tutorial.pdf
https://zybuluo.com/hanbingtao/note/581764 (in Chinese)
Thesis
The vanishing gradient problem
GPU
Some information about the external GPU, please check the following link.
https://egpu.io/setup-guide-external-graphics-card-mac/#tb3-enclosures