Install sklearn (http://scikit-learn.org/stable/install.html)
Better to update pip first
In win10, “in left bottom corner window: Type here to search”, type “cmd” , you will see cmd coming up, select admin mode by right click cmd to select the admin mode.
Scikit-learn requires:
· Python (>= 2.7 or >= 3.3),
· NumPy (>= 1.8.2),
· SciPy (>= 0.13.3).
>python -m pip install --upgrade pip
>pip install --upgrade numpy
>pip install --upgrade scipy
>pip install -U scikit-learn
Done
Now run IDLE(python)
See an run http://scikit-learn.org/stable/tutorial/basic/tutorial.html
Or run
http://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html#sphx-glr-auto-examples-classification-plot-digits-classification-py
May also install winpython:
Demo on different topics https://scikit-learn.org/stable/user_guide.html
bagging https://scikit-learn.org/stable/modules/ensemble.html#bagging-meta-estimator
clustering https://scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods
Neural net https://scikit-learn.org/stable/modules/neural_networks_unsupervised.html
ensemble methods https://scikit-learn.org/stable/modules/ensemble.html
Kernal density https://scikit-learn.org/stable/modules/density.html#kernel-density-estimation
working with text https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html#loading-the-20-newsgroups-dataset
Tested:
Digit recognition https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html#sphx-glr-auto-examples-classification-plot-digits-classification-py
SVM/PCA face recognition https://scikit-learn.org/stable/auto_examples/applications/plot_face_recognition.html#sphx-glr-auto-examples-applications-plot-face-recognition-py
Decision Tree https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html#sphx-glr-auto-examples-tree-plot-iris-dtc-py
Species distribution modeling https://scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html#sphx-glr-auto-examples-applications-plot-species-distribution-modeling-py
Decision tree and adaboost https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html#sphx-glr-auto-examples-ensemble-plot-adaboost-regression-py
Feature importances with forests of trees https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html#feature-importances-with-forests-of-trees
Comparing random forests and the multi-output meta estimator https://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py
Two-class AdaBoost https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html#sphx-glr-auto-examples-ensemble-plot-adaboost-twoclass-py
Gaussian mixture https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_sin.html#sphx-glr-auto-examples-mixture-plot-gmm-sin-py
Classification of text documents using sparse features https://scikit-learn.org/stable/auto_examples/text/plot_document_classification_20newsgroups.html#sphx-glr-auto-examples-text-plot-document-classification-20newsgroups-py
Working with text document working_with_text_data.py (see below) https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html#loading-the-20-newsgroups-dataset
word vector representation https://medium.com/@japneet121/introduction-713b3d976323