大問1:問題数は8問、配点は3点で固定化? 今年も反比例。確率が出題。
大問2:またダイアグラム、でも懐かしい内容。1次関数と方程式。1問目の正解率が気になる(きちんと変換できました?)
大問3:図形の証明がだんだん前に・・・。(3)は数Ⅰの三角比でも出る。
大問4:資料の整理がまた大問に(今回はヒストグラム)。とうとう標本調査が出題されたので今後は私立でも出題されるかも?(統計は今回の指導要領改訂で重きをおいているはずなので)
大問5:大学入学共通テストのプレテストで似たものを見た気が・・・。2次関数。(3)②は図形の一部を移動させると楽なことに気が付くかどうか。
大問6:平成26年(2014年)度問題の再来。規則性。(1)②は条件に当てはまるものがわかるかがカギ(図6の数の並びからaが2個とbが4個なのでbが小さいほうが合計も小さいこと、またa+b=10とa<bからa=4、b=6)。③はちょっと面倒(泥臭いがx=2や3のときにどうなるか、そこから規則性を考えたほうが楽?)。(2)は意外と直感で解けるかも? 規則性で悩んだらまず実際の例を2つか3つ書くことが大事。
全体:今年も大問が6つ。問題文で前提条件が多く、短時間での整理ができないときつい印象(今年は国語も長い。大学入学共通テストのプレテストや全国学力テストを念頭に置いて、必要な情報を選択させようとしている?)。その代わり内容自体は解きやすいものが多いため、そこで差がつくはず。
出題方法が変わって解けない、ということは問題文を精読せずにパターンで解いている証拠。
入試全体が大転換の最中で今後も変わることが予想できるため、傾向対策も大事だが早期にしっかりとした基礎を作っておくことが最大の対策法。
数学で例えると、連立方程式を加減法と代入法のどちらで解くと楽なのか、判断して使い分けができていますか?
なんでも加減法で解いている人は要注意です。