Abstract 2013~earlier

Karenia属渦鞭毛藻における進化的起源の異なる葉緑体型GAPDHの進化と細胞内局在(日本進化学会第15回大会)

渦鞭毛藻Karenia brevisは渦鞭毛藻類が本来持つペリディニン型葉緑体をハプト藻葉緑体と置換した。本種の核にはペリディニン型葉緑体型GAPDHと、ハプト藻葉緑体型GAPDHをコードするgapC1-pおよびgapC1-h遺伝子が存在する。これらのタンパク質配列のN末端には葉緑体移行シグナル様配列があり、一次構造解析ではどちらが本種の葉緑体で機能するGAPDHかは不明だった。本研究ではK. brevisの「葉緑体型」GAPDHのN末端配列の葉緑体移行能を検証した。gapC1-p/gapC1-hプレ配列を融合した緑色蛍光タンパクをトキソプラズマ細胞で発現させた結果、検討したN末端プレ配列はいずれも葉緑体移行能をもつと推測できた。しかし2種のgapC1遺伝子の発現量の差から、Karenia属の葉緑体ではGapC1-hが主に機能すると考えられる。本講演ではK. brevisの近縁種で行った実験結果と合わせ、Karenia属葉緑体型GADPHの進化について議論する。

Karenia属渦鞭毛藻類の三次葉緑体獲得に伴う葉緑体型GAPDHの進化(第1回マトーリョシカ型生物学研究会)

本研究では三次共生に伴う遺伝子置換モデルとして、Karenia属渦鞭毛藻類2種(K. brevis, K.mikimotoi)が持つ機能が相同のとされる2つの葉緑体関連遺伝子GAPDH(ハプト藻由来のgapC1fdと祖先種由来のgapC1p)について転写産物の一次構造及び転写産物量の比較を行なった。

Karenia属渦鞭毛藻類の三次葉緑体獲得に伴う葉緑体型GAPDHの進化(日本藻類学会第36回大会)

Karenia属渦鞭毛藻類は,元々有していたペリディニン型葉緑体をハプト藻類由来葉緑体へと置換(三次共生)した。このため渦鞭毛藻核では,内在性のペリディニン型葉緑体用遺伝子は、共生したハプト藻により持ち込まれた相同遺伝子と置換されたと考えられている。これまでの研究により,Karenia brevisは光合成CO2固定用遺伝子としてgapC1-fdと呼ばれるハプト藻葉緑体型遺伝子に加え,従来のペリディニン型葉緑体用gapC1-pも有していることが分かっている。本研究では,三次共生に伴う遺伝子置換のモデルとして,K. brevisと近縁種K. mikimotoiのgapC1-pとgapC1-fdについて転写産物の一次構造および転写産物量の比較を行った。K. brevisでは,機能的であろうと考えられる一次構造をもつgapC1-pとgapC1-fd転写産物が確認された。一方,K. mikimotoiではgapC1-fdは機能的一次構造を有した転写産物が確認されたが,gapC1-pは有意な転写産物量が検出できず,PCRでは偽遺伝子の転写産物だけがかろうじて確認された。すなわち,偽遺伝子化したgapC1-pはK. mikimotoiゲノムから駆逐される直前だと考えられ,K. brevisゲノム上のgapC1-pとは遺伝子置換の異なる中間段階にあたることを示唆する。

Is the replacement of a gene encoding plastid-targeted GAPDH on-going in the dinoflagellate genus in Karenia?  (Protist2012)

The vast majority of photosynthetic dinoflagellates has plastids containing a unique cartioind peridinin and encodes a single gene encoding plastid-targeted GAPDH (peridinin-type GapC1 or GapC1-p) in their nuclear genomes. On the other hand, the dinoflagellate genus Karenia is known to bear tertiary plastids derived from a haptophyte endosymbiont, and possess the endosymbiotically acquired ‘gapC1-fd,’ in addition to the endogenous gapC1-p. We here compared the primary structure and abundance of two types of gapC1 transcripts in K. bervis (Kb) and K. mikimotoi (Km). No significant expressional difference was detected between the two gapC1 genes in Kb cells, while gapC1-fd transcripts appeared to be much more abundant than gapC1-p transcripts in Km cells. As expected for dinoflagellate mRNAs, Kb gapC1-fd and gapC1-p, and Km gapC1-fd transcripts possessed the spliced leaders (SL) and poly-A tails at their 5′ and 3′ ends, respectively. However, only truncated gapC1-p transcripts without the SL or poly-A tail were isolated from Km cells, suggesting that Km gapC1-p is a recently established pseudogene. These results indicate that Karenia gapC1 genes are an excellent model to study orthologous gene replacements associated with tertiary endosymbiosis.

Difference in transcriptional regulation between two genes encoding plastid-targeted GAPDH in the dinoflagellate Karenia mikimotoi. (SMBE2011)

The vast majority of photosynthetic dinoflagellates have plastids containing chlorophylls a+c plus a unique cartioind peridinin. These 'peridinin-type' dinoflagellates possess a single gapdh gene encoding plastid-targeted glyceraldehydes-3-dehydrogenases (GapC1) in their nuclear genomes, so that these GapC1 proteins were synthesized in the cytosol and then transported to the peridinin-type plastids. It has been known that the plastid evolution in dinoflagellates is extremely complex, and plastid replacement took place in multiple lineages during dinoflagellate evolution. The dinoflagellate Karenia mikimotoi is one of the species experienced plastid replacement and bears a non-cannonical plastid derived from a haptophyte. Curiously, two distinct types of gapC1 genes -- 'gapC1-p' vertically inherited beyond the plastid replacement and 'gapC1-fd' seemingly acquired from the endosymbiotic haptophyte that gave rise to the current Karenia plastid. Nevertheless, it remains unclear how the two functionally redundant gapC1 genes are regulated in the Karenia cells. We here investigated the numbers of the two gapC1 transcripts by using a reverse transcriptase real-time PCR assay. In the assay based on the cDNA synthesized from total RNA, the numbers of the two gapC1 transcripts were nearly equal. However, the assay based on the cDNA synthesized from poly-A+ RNA, the gapC1-p transcripts was >100-fold less abundant than the gapC1-fd transcripts. These results indicate that (i) GapC1-fd works the principal GADH in the Karenia plastid, and (ii) few gapC1-p transcripts are processed into the polyadenylated (mature) mRNA, suggesting that gapC1-p and gapC1-fd genes are in a very early step of orthologous gene replacement associated with plastid acquisition via endosymbiosis.

渦鞭毛藻Lepidodinium「葉緑体型」GAPDH遺伝子の転写活性比較 (第5回日本進化原生生物学研究会)(本来ならJSEPの演題には要旨はないが、キャンセルした藻類学会の発表要旨を残した)

光合成生物は、細胞質で合成され葉緑体に輸送されるGAPDH(グリセルアルデヒド3リン酸脱水素酵素)をもつ。一般に光合成性渦鞭毛藻類は「ペリディニン型」と呼ばれる葉緑体をもち、その葉緑体中ではGapC1と呼ばれる葉緑体型GAPDHが機能している。しかしLepidodinium属渦鞭毛藻類は、元々もっていたペリディニン型葉緑体を緑藻葉緑体と入れ替え[1]、葉緑体型と考えられる2種類のGAPDH、即ちGapC1-pとGapC1-fdを保持する[2]。前者は葉緑体交換以前から保持していた葉緑体型GAPDH、後者は水平伝播した葉緑体型GAPDHであると考えられている[2]。我々は、GapC1-pは消失したペリディニン型葉緑体の痕跡であり、Lepidodinium葉緑体ではGapC1-fdが主要葉緑体型タンパクとして機能しているという作業仮説を立てた。この仮説を検証する第一歩として、葉緑体型GAPDHをコードすると考えられる2つの遺伝子がどのような転写制御を受けているのか調べた。逆転写リアルタイムPCR法を用いて細胞内の転写産物量を比較した結果、予想に反し両遺伝子の転写産物量には大きな違いがなかった。本講演では、Lepidodinium葉緑体におけるGAPDH進化に関する新たな仮説を議論する。 

[1]Takishita et al. 2007 Gene 410:26-36. [2]Matsumoto et al. 2011 Protist in press

Transcriptional difference between two nucleus-encoded plastid-targeted GAPDH genes in the dinoflagellate Lepidodinium chlorophorum (ISEP XVIII)

Photosynthetic dinoflagellates possess at least two glyceraldehydes-3-dehydrogenases (GAPDH) for the reversible interconversion between glyceraldehyde-3-phosphate and 1,3-diphosphoglycerate. The genes encoding the two GAPDHs, GapC1 and GapC2, are encoded in their nuclear genomes, and their gene products work in the different compartments in the cell: GapC2 works in the cytosol, while GapC1 is synthesized in the cytosol and then targeted to plastids. The dinoflagellate Lepidodinium chlorophorum most likely experienced plastid replacement involved in a green alga (Takishita et al. 2008 410:26-36; Matsumoto et al. Protist 2010 in press). Prior to the plastid replacement, the ancestral Lepidodinium cells should have had peridinin-containing plastids and utilized the GapC1 enzyme that shared the common evolutionary ancestry with those in other peridinin-containing dinoflagellates (henceforth designate as GapC1-p). Interestingly, L. chlorophorum appeared to retain the GapC1-p gene in the nuclear genome, albeit no peridinin-containing plastid exists in the current L. chlorophorum cells. More surprisingly, the second GapC1 gene, which showed a strong affinity to the haptophyte GapC1 homologues, was found in this dinoflagellate species (henceforth designate as GapC1-fd). Thus, L. chlorophorum may have laterally acquired the haptophyte GapC1 gene, in addition to the vertically descended GapC1-p gene. Here we assessed the difference in copy number between the mRNA species of the two evolutionarily distinctive, but functionally redundant GapC1 genes in L. chlorophorum grown under the laboratory conditions by using real-time RT PCR assay. GapC2 and GapC1-p mRNAs are broadly similar to each other in copy number. In sharp contrast, the copy number of GapC1-fd mRNA was negligible comparing to those of GapC2 and GapC1-p mRNAs. These results suggest that L. chlorophorum predominantly utilizes GapC1-p as the plastid-targeted GAPDH under the laboratory culture conditions. We are currently not yet sure of the precise cellular function(s) of GapC1-fd in L. chlorophorum.