Unconventional Hydrocarbons

Unconventional Hydrocarbons and Hydraulic Fracturing

Task Force Leader: Ingrid Tomac

Hydraulic fracturing is a technique for enhancing permeability of oil, gas and geothermal reservoirs. Rock mass permeability increase by forming new fractures or hydro-shearing existing fractures boosts production from the geological formation. Geomechanics of hydraulic fracturing of deep, often hot geological formations with complex across-scale fracture systems and various in-situ stress fields requires development of new approaches. Coupled hydro-thermo-chemo-mechanical processes occur across temporal and spatial scales and govern hydraulic fracturing outcomes and long-term hydrocarbon and geothermal production. Hydraulic fracturing processes accompany multi-phase flow and transport of gaseous, aqueous and solid (proppants) phases. In-spite of recent petroleum industry developments in hydrocarbon fracturing and proppant flow and transport fields, geomechanics of geomaterials, applicability of fracture mechanics theories under complex deep underground conditions and multi-physics of dense-phase solid-fluid slurry flow and transports are still poorly understood. Strongly coupled problems bring unprecedented challenges to the geomechanics community.