Phenomena

Phenomena and NGSS

Scientific phenomena are occurrences in the natural and human-made world that can be observed and cause one to wonder and ask questions. Phenomena-based instruction is a primary feature of the NGSS classroom. A three-dimensional learning approach requires students to use the Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas in concert to explore, investigate, and explain how and why phenomena occur. The complexity of a student explanation should be appropriate to the learning progression at the grade span.

Phenomena do not have to be phenomenal. Often simple events, when looking at them through a scientific eye, can elicit curiosity and questions in students and adults. Such wonderment is the beginning of engagement in which answers to questions are sought.

When choosing useful phenomenon for classroom use, the scale or size of phenomena is important. Determining the grain size of a phenomenon involves considering the length of instructional time required to teach it, the depth of student explanation possible, and the complexity of the phenomenon itself. In the same way a jigsaw puzzle can be broken down into individual pieces, larger phenomena can be broken down into smaller phenomena. By having students observe and explain smaller related phenomena first, they can then be challenged to explain the larger and more complicated larger phenomenon.

Anchoring and Investigative Phenomena

We call the larger phenomena anchoring phenomena and the smaller phenomena investigative phenomena which are defined below.

Anchoring Phenomena

Anchoring phenomena are the focus of an instructional unit and connect student learning across multiple weeks of instruction. They often require significant or in depth understanding of several science ideas as well as multiple lines of evidence and reasoning to adequately explain. Because of their size or scale, students may only be able to explain particular aspects of an anchoring phenomena.

Investigative Phenomena

Investigative phenomena are used in instructional sequences (across several lessons) to provide students personal experience with observable events where an evidence based explanation can be constructed. They often require understanding or use of a fewer number of connected science ideas to explain. By explaining investigative phenomena, students begin to explain aspects of an anchoring phenomena.

The above text is borrowed from #ProjectPhenomena

Phenomena-Driven Instruction

"Phenomenon-driven instruction is a significant innovation of the NGSS. This idea is foundational to the resources provided in this document. "By centering science education on phenomena that students are motivated to explain, the focus of learning shifts from learning about a topic to figuring out why or how something happens." Achieve goes on to explain that "Despite their centrality in science and engineering, phenomena have traditionally been a missing piece in science education, which too often has focused on teaching general knowledge that students can have difficulty applying to real world contexts.”

The California Science Framework highlights that a “fundamental principle in the CA NGSS is that students must use the three dimensions to understand specific phenomena, and that phenomena drive science learning.” Northwestern Professor Brian Reiser, a contributing author to the National Research Council’s Framework for K-12 Science Education, shares in an NGSS/Achieve video Using Phenomena in NGSS-Designed Instruction, that “one of the biggest shifts in NGSS is really using phenomena in a different way.” Reiser further explains this shift in the use of phenomena in science classrooms by suggesting that “...rather than teaching the idea first and then giving the phenomena as an exemplar, we often start with the phenomena because that is the thing that we need to explain, that is the thing that motivates the knowledge that we need to figure out….maybe continuing to return to the phenomena as we make more and more progress and build more sophisticated versions of that understanding. So they’re not something we bring in after the fact. They’re something that we thread through and become the context in which we are applying the science knowledge as we’re building it.”

This emphasis on phenomena-driven instruction requires a significant shift in how science teachers approach planning, teaching, and assessment. The Essential Learning Events described in this document and the supporting resources provided for each event attempt to provide teachers with the necessary background and strategies to meaningfully engage students in the exploration and explanation of phenomena through quality learning experiences."

Source: San Diego County Office of Education Introduction to Essential Learning Events

ELE Placemat.pdf