Un sensor es un componente electrónico que nos proporciona información sobre algo que ocurre alrededor. ¿Cuánta luz hay? ¿Hay algún objeto próximo? ¿Cuál es la temperatura?
En el caso de los sensores va a ser muy importante saber si nuestro componente es digital o analógico, ya que esto determina dónde debe ser conectado, si a los pines digitales o a los analógicos.
Un sensor digital es aquel que solo puede diferenciar entre dos estados (cierto o falso), no es capaz de dar una información intermedia. Por ejemplo, un pulsador está pulsado o no lo está, no puede quedarse a medio pulsar.
Un sensor analógico es aquel que puede tener más de dos valores, por lo que no se puede transmitir de forma digital. Por ejemplo, si queremos informar sobre intensidad de luz de la habitación, no nos vale con decir “cierto” o “falso”, necesitamos más valores para indicar si hay mucha o poca luz. En una placa Arduino, un sensor analógico puede transmitir valores entre el 0 y el 1023.
Un pulsador es un sensor digital que al presionarlo se activa (1 o verdadero) y al dejar de pulsarlo se desactiva (0 o falso). En nuestra vida diaria estamos rodeados de pulsadores, desde los botones del ascensor a los botones de stop de los autobuses o las teclas del ordenador.
El sensor infrarrojo o IR es un dispositivo que emite una luz infrarroja y detecta la cantidad de luz infrarroja reflejada. De esta forma es capaz de diferenciar entre blanco y negro o de medir distancias en algunos casos. El sensor infrarrojo que vamos a utilizar es digital y devuelve un 1 cuando detecta mucha luz (o detecta blanco) y un 0 cuando no detecta luz (o detecta negro). Hay muchos tipos de sensores infrarrojos, y en ellos se pueden codificar mensajes en la señal del emisor que podrán ser leídos por el receptor, lo que los hace idóneos para por ejemplo mandos de televisión y diferentes dispositivos.
El sensor de luz, también conocido como LDR o fotorresistencia, es un sensor analógico que nos da una medida de la intensidad de luz. Como todos los sensores analógicos, puede dar valores comprendidos entre 0 y 1023, dando un 0 cuando se encuentra totalmente a oscuras y aumentando el valor a medida que aumenta la luz. En este tipo de sensores el rango de medida abarca también el espectro de luz visible por el ser humano por lo que es ideal en aplicaciones como las de luces automáticas (se encienden o no en función de la cantidad de luz).
Un potenciómetro es una resistencia eléctrica variable, es decir, un componente que permite regular la intensidad de la corriente eléctrica de un circuito. Se utilizan en muchos dispositivos, como en lámparas para regular la intensidad de luz o en equipos de música para ajustar el volumen. Como todos los sensores analógicos, el potenciómetro devolverá valores entre 0 y 1023.
El joystick es un dispositivo de control con dos ejes en nuestro caso; es en realidad la combinación de tres sensores en un mismo componente, con dos sensores analógicos para controlar las posiciones horizontal y vertical, y uno digital que actúa como pulsador.
Para controlar la posición horizontal (eje x) y vertical (eje y) tiene dos potenciómetros, uno para cada dirección, que nos darán valores comprendidos entre 0 y 1023. El pulsador al ser digital, tan solo podrá dar los valores ‘0’ y ‘1’.
Por esta razón, el joystick tiene tres cables de conexión, donde si nos fijamos en las conexiones podemos ver que indica XVG (para el movimiento horizontal) YVG (para el movimiento vertical) y KVG (para el pulsador). Se puede ver el uso de este componente en los mandos para controlar videoconsolas así como en los mandos de control de algunos aviones modernos.
La botonera no es más que un conjuntos de botones o pulsadores; se trata de un sensor de tipo analógico que transmite una señal analógica (entre 0 y 1023) que será interpretada por la placa para saber qué botón ha sido pulsado. Podría parecer un sensor digital, puesto que tiene pulsadores (que se han definido como digitales), pero se trabaja con una señal analógica ya que si no sería imposible determinar qué botón ha sido pulsado si la placa recibe tan solo un ‘1’ o un ‘0’. Este componente se puede encontrar por ejemplo (con muchos mas botones) en los teclados de ordenador.
Un sensor de ultrasonidos es un componente capaz de medir distancias. Utiliza ondas de alta frecuencia y mide el tiempo que tarda la onda en regresar para medir la distancia a un objeto. Este tipo de sensores tiene dos partes, una es el emisor que emite la señal y la otra el receptor que recibe la señal si ésta rebota sobre algún obstáculo cercano. Pueden ser utilizados para detectar cualquier material capaz de rebotar las ondas de sonido, lo que incluye líquidos e incluso material en suspensión
Este sistema es el mismo que utilizan los murciélagos para orientarse y debido a las propiedades que se han explicado es muy útil para medir el nivel de llenado de tanques con líquido, que dejarían pasar la luz utilizada por otros sensores.
Todos los componentes del kit vienen con tres cables preparados para conectarse directamente a la placa Zum Core sin necesidad de montar ningún circuito extra; para conectarlos solo tienes que tener en cuenta los colores de los cables para conectarlos correctamente a los pines macho de la placa.
Puedes conectar componentes que no sean del kit, recuerda que en este caso debes saber cómo montar el circuito que dé protección y asegure el funcionamiento de cada componente.
Como puedes ver en la imagen, los colores de los cables pueden variar, pero eso no tiene que asustarte. En todos los casos habrá:
Para conectarlos haz coincidir los colores de los cables del componente (rojo y negro) con los de los pines macho, ¡y listo!
En algunos componentes el numero de cables es superior y sobrepasa el número de pines macho que admite cada pin digital/analógico de la Zum Core. No tienes que preocuparte, ¡cuando lleguemos a ello te explicaremos cómo conectarlos!