The 92 Escher-Johnson polyknots are knots with the polyhedral asymmetries of the Johnson polyhedra (also known as Johnson solids). Like other polyknots, they come in chiral pairs, with only one of the pairs exhibited here. Each polyknots has a knot at the vertex of the base polyhedron, and the type of knot is determined by the vertex configuration of the base polyhedron.Â
structure: Escher-Johnson J81 (metabidiminished rhombicosi-dodecahedron) polyknot
components: triangles
structure: Escher-Johnson J82 (gyrate bidiminished rhombicosi-dodecahedron) polyknot
components: triangles
structure: Escher-Johnson J83 (tridiminished rhombicosi-dodecahedron) polyknot
components: triangles
structure: Escher-Johnson J84 (snub disphenoid) polyknot
components: triangles
structure: Escher-Johnson J85 (snub square antiprism) polyknot
components: triangles
structure: Escher-Johnson J86 (sphenocorona) polyknot
components: triangles
structure: Escher-Johnson J87 (augmented sphenocorona) polyknot
components: triangles
structure: Escher-Johnson J88 (sphenomegacorona) polyknot
components: triangles
structure: Escher-Johnson J89 (hebesphenomega-corona) polyknot
components: triangles
structure: Escher-Johnson J90 (disphenocingulum) polyknot
components: triangles
structure: Escher-Johnson J91 (bilunabirotunda) polyknot
components: triangles
structure: Escher-Johnson J92 (triangular hebesphenorotunda) polyknot
components: triangles