Розв'язування рівнянь другого степеня, зокрема й квадратних, у стародавні часи було викликане потребою вирішувати проблеми пов'язані з поділом землі, знаходженням її площі, земельними роботами військового характеру, а також із розвитком таких наук, як математика й астрономія.
Квадратні рівняння вміли розв'язувати вавилоняни близько 2000 років до н. е. Серед клинописних текстів було знайдено приклади розв'язування неповних, а також часткових випадків повних квадратних рівнянь. Відомо, що їхні методи розв'язання майже збігаються із сучасними, проте невідомо, яким чином вавилоняни дійшли до цих методів: майже на всіх знайдених до того часу клинописних текстах збереглися лише вказівки щодо знаходження коренів рівнянь, але не зазначено, як вони були виведені. Однак, незважаючи на розвинутість математики у ті часи, в цих текстах немає згадки про від'ємні числа і про загальні методи розв'язування рівнянь.
У стародавній Греції квадратні рівняння розв'язувалися за допомогою геометричних побудов. Методи, які не пов'язувалися з геометрією, вперше наводить Діофант Александрійський у III ст. У своїх книгах «Арифметика» він наводить приклади розв'язування неповних квадратних рівнянь. Його книги з описом способів розв'язування повних квадратних рівнянь до нашого часу не збереглися.
Правило знаходження коренів рівняння, зведеного до вигляду сучасного нам звичного вигляду уперше дав індійський вчений Брахмагупта.
Виведенням формули загального розв'язку квадратних рівнянь займався Франсуа Вієт.
Він же й вивів формули залежності коренів рівняння від коефіцієнтів у 1591 році. Після праць нідерландського математика А. Жирара (1595 — 1632), а також Декарта і Ньютона спосіб розв'язування квадратних рівнянь набув сучасного вигляду.