Guía de Investigación:
Generadores Concepto:
Un generador es una máquina eléctrica rotativa que transforma energía mecánica en energía eléctrica. Lo consigue gracias a la interacción de los dos elementos principales que lo componen: la parte móvil llamada rotor, y la parte estática que se denomina estátor.
Cuando un generador eléctrico está en funcionamiento, una de las dos partes genera un flujo magnético (actúa como inductor) para que el otro lo transforme en electricidad (actúa como inducido).
Tipos de generadores:
Los generadores eléctricos se diferencian según el tipo de corriente que producen. Así, nos encontramos con dos grandres grupos de máquinas eléctricas rotativas: los alternadores y las dinamos.
Los alternadores generan electricidad en corriente alterna. El elemento inductor es el rotor y el inducido el estátor. Un ejemplo son los generadores de las centrales eléctricas, las cuales transforman la energia mecánica en eléctrica alterna.
Las dinamos generan electricidad en corriente continua. El elemento inductor es el estátor y el inducido el rotor. Un ejemplo lo encotraríamos en la luz que tiene una bicicleta, la cual funciona a través del pedaleo
Una central termoeléctrica es una instalación empleada en la generación de energía eléctrica a partir de la energía liberada en forma de calor, normalmente mediante la combustión de combustibles fósiles como petróleo, gas natural o carbón.
Este calor es empleado por un ciclo termodinámico convencional para mover un alternador y producir energía eléctrica.
Ventajas e inconvenientes de las centrales térmicas convencionales:
Ventajas:
Inconvenientes:
El principal uso que se le da actualmente a la energía nuclear es el de la generación de energía eléctrica. Las centrales nucleares son las instalaciones encargadas de este proceso.
Prácticamente todas las centrales nucleares en producción utilizan la fisión nuclear ya que la fusión nuclearactualmente es inviable a pesar de estar en proceso de desarrollo.
El funcionamiento de una central nuclear es idéntico al de una central térmica que funcione con carbón, petróleo o gas excepto en la forma de proporcionar energía calorífica (calor) en el agua para convertirla en vapor. En el caso de los reactores nucleares este calor se obtiene mediante las reacciones de fisión nuclear de los átomos del combustible nuclear, mientras que en las otras centrales térmicas se obtiene energía térmica mediante la quema de uno o varios combustibles fósiles.
A nivel mundial el 90% de los reactores nucleares de potencia, es decir, los reactores destinados a la producción de energía eléctrica son reactores de agua ligera (en las versiones de agua a presión o de agua en ebullición). En ingeniería nuclear se denomina agua ligera al agua corriente
Para hacer funcionar una central nuclear se dispone de una gran variedad de tipos de reactores nucleares. Sin embargo, todos los tipos de reactores nucleares tienen un mismo objetivo: utilizar el calor de las reacciones de fisión nuclear para accionar las turbinas que van a generar electricidad.
De todos los tipos de reactores nucleares destacan dos: el reactor nuclear de agua a presión (PWT) y el reactor nuclear de agua en ebullición (BWR). El reactor de agua a presión es el más utilizado en el mundo y el que vamos a explicar simplificadamente a continuación.
El principio básico del funcionamiento de una central nuclear con un reactor de agua a presión se puede simplificar en estos 4 pasos:
Desde un punto de vista físico se observan varios cambios de energía: inicialmente tenemos energía nuclear (la que mantiene los núcleos de los átomos cohesionados), posteriormente, al romperse se convierte en energía térmica. Parte de la energía térmica se convierte en energía interna del agua al convertirse en vapor según los principios de la termodinámica. La energía interna y la energía calorífica del agua se transforman en energía cinética al accionar la turbina. Finalmente, el generador convierte la energía cinética en energía eléctrica.
El encargado de convertir la energía nuclear en energía térmica es el reactor nuclear. Él es el encargado de provocar y controlar estas fisiones atómicas que generarán una gran cantidad de energía calorífica (calor). Con este calor se calienta agua para convertirla en vapor a alta presión y temperatura.
El agua transformada en vapor a alta temperatura sale del edificio de contención debido a la otra presión a que está sometido hasta llegar a la turbina y hacerla girar. En este momento parte de la energía calorífica del vapor se transforma en energía cinética. Esta turbina está conectada a un generador eléctrico mediante el cual se transformará la energía cinética en energía eléctrica.
Por otra parte, el vapor de agua que sale de la turbina, aunque ha perdido energía caloríficasigue estando en estado gaseoso y muy caliente, por lo que hay refrigerar antes de volverlo a introducir en el circuito. Al salir de la turbina se dirige a un depósito de condensación donde estará en contacto térmico con unas tuberías de agua fría. El vapor de agua se vuelve líquido, y mediante una bomba se redirige nuevamente al reactor nuclear para volver a repetir el ciclo.
De ahí que las centrales nucleares siempre están instaladas cerca de una fuente abundante de agua fría (mar, río, lago), para aprovechar esta agua en el depósito de condensación. La columna de humo blanco que se puede ver saliendo de determinadas centrales es el vapor de agua que se provoca cuando se está intercambio de calor.
Una central térmica solar o central termosolar es una instalación industrial en la que se aprovecha la radiación solar para generar electricidad. La radiación solar se utiliza para calentar un fluido. Mediante fluido, aprovechando las leyes de la termodinámica se produce la potencia necesaria para mover un alternador para generación de energía eléctrica como en una central termoeléctrica clásica.
El funcionamiento de una central solar térmica se basa en la obtención de calor de la radiación solar y transferirla a un medio portador de calor. Este portado de calor, generalmente es agua.
Para conseguir elevar la temperatura del agua a los altos niveles deseados se debe concentrar la máxima radiación solar en un punto. De este modo se pueden obtener temperaturas de 300ºC a 1000ºC. Como mayor sea la temperatura mayor será el rendimiento termodinámico de la central solar térmica.
La captación y concentración de los rayos solares se hacen por medio de espejos con orientación automática que apuntan a una torre central donde se calienta el fluido, o con mecanismos más pequeños de geometría parabólica. El conjunto de la superficie reflectante y su dispositivo de orientación se denomina heliostato.
Existen varios fluidos y ciclos termodinámicos utilizados en las configuraciones experimentales. Los ciclos utilizados van desde el ciclo Rankine, (utilizado en centrales nucleares, centrales térmicas de carbón) hasta el ciclo Brayton (centrales de gas natural). También se ha realizado muchas otras variedades como el motor de Stirling. Los ciclos más utilizados son los que combinan la energía termosolar con el gas natural.
Ir a la navegaciónIr a la búsqueda
Imagen de un parque eólico desde Tineo, Asturias - España.
Un parque eólico es una agrupación de aerogeneradores que transforman la energía eólica en energía eléctrica.
Estreno mundial: 11 aerogeneradores de 7,5 MW Enercon E126 de viento Estinnes, Bélgica, 10 de octubre 2010.
Parque eólico en el mar (offshore), en Copenhague.
Los parques eólicos se pueden situar en tierra o en el mar (ultramar), siendo los primeros los más habituales, aunque los parques offshore han experimentado un crecimiento importante en Europa en los últimos años.
El número de aerogeneradores que componen un parque es muy variable, y depende fundamentalmente de la superficie disponible y de las características del viento en el emplazamiento. Antes de montar un parque eólico se estudia el viento en el emplazamiento elegido durante un tiempo que suele ser superior a un año. Para ello se instalan veletas y anemómetros. Con los datos recogidos se traza una rosa de los vientos que indica las direcciones predominantes del viento y su velocidad.
Los parques eólicos proporcionan diferente cantidad de energía dependiendo de las diferencias sobre diseño, situación de las turbinas, y por el hecho de que los antiguos diseños de turbinas eran menos eficientes y capaces de adaptarse a los cambios de dirección y velocidad del viento. A pesar de que el impacto ambiental de las plantas eólicas es relativamente pequeño comparado con otras formas de generación, los aerogeneradores producen contaminación acústica y visual. Asimismo se cree que puede existir impacto importante en la fauna ya que las aves no son capaces de ver las aspas cuando estas giran.
Pero los mayores inconvenientes de esta fuente energética son que: es intermitente y no siempre puede obtenerse la potencia deseable; no puede ser almacenada como energía eólica, cosa que encarece el coste; es dispersa y se necesitan grandes superficies. Sin embargo el terreno utilizado para los parques puede ser aprovechado para actividades agrícolas, zonas de recreo. Comienza además a haber problemas de emplazamiento: hay menos energía al abrigo del viento de una turbina (y más turbulencia) que delante de ella. En parques eólicos, los aerogeneradores suelen espaciarse entre 150 y 300 metros los unos de los otros o con otros obstáculos. Evitar interferencias entre aerogeneradores requiere grandes superficies para instalar los parques y podemos considerar que en cada región existe una potencia máxima extraíble.
Hay mucha desinformación acerca del sistema eléctrico en Argentina, así como de los subsidios a la electricidad, incluso hay algunos mitos al respecto. A continuación, se explicará de manera sencilla y fácil de entender cómo es la estructura de la red eléctrica del país, cuáles son los factores que causan los precios tan desparejos de la electricidad para los distintos distritos de Argentina y que hacen que en el Área Metropolitana de la Ciudad de Buenos Aires (AMBA), el costo de la electricidad sea muy inferior al resto del país.
Para comenzar, hay que conocer la anatomía de la infraestructura del sistema eléctrico:
El sistema eléctrico de la Argentina está dividido en tres segmentos fundamentales que condicionan los costos de la electricidad al consumidor final:
La generación de la energía eléctrica se realiza en decenas de plantas generadoras (usinas eléctricas) distribuidas a lo largo y lo ancho del país. Los generadores de electricidad de Argentina incluyen plantas de generación térmica, hidroeléctrica, nuclear, eólica y fotovoltaica. Hacia enero de 2016, el 59,94% de la energía eléctrica de Argentina era producida en plantas de generación térmica a partir de combustibles fósiles; el 34,08% en plantas de generación hidroeléctrica; el 5,38% en plantas nucleares; el 0,57% a partir de generadores eólicos y el 0,03% en generadores fotovoltaicos (energía solar).
Las plantas de generación eléctrica de la Argentina son operadas por más de 55 empresas que en su mayoría son privadas y que operan más de una usina eléctrica en la mayor parte de los casos. Entre estas empresas, se incluyen 35 compañías de generación térmica, 20 compañías de generación hidroeléctrica y una compañía nacional de generación nuclear (Nucleoeléctrica Argentina S.A.).
En las centrales eléctricas hay máquinas llamadas generadores que aprovechan la principal propiedad de la energía, que es convertirse de un tipo de energía a otra. La energía eléctrica se produce cuando una bobina metálica rodeada por magnetos comienza a girar, así se de simple. En las centrales eléctricas, estos generadores convierten la energía mecánica (de movimiento de rotación) de enormes turbinas en grandes cantidades de energía eléctrica.