列簡梯形式矩陣 (reduced row-echelon form)
1.所有 非零列 的第一個 非零元素 必須為1
2.第一個 非零元素(1) 所在之行的 其他元素均為零
3.第一個 非零元素(1)之前的「0」之個數依其列次成嚴格遞增
row rank (A)=row rank of rref(A)
row rank of rref(A)=column rank of rref(A) ---part I
column rank of rref(A)=column rank (A) ---part II
詳細證明 請參考:
Row rank equals column rank part I(10:49)(YouTube)
Row rank equals column rank part II(7:53)(YouTube)
另證:
row rank equals column rank, an alternative proof(10:47)(YouTube)
將一個矩陣化簡為 列簡梯形矩陣 主要應用為:
1.線性獨立之判別
2.求解向量空間之基底與維度
3.線性聯立方程式 解的類型 之判別