Meteorites

Molecular diversity in Insoluble Organic Matter of Meteorites

The insoluble organic matter (IOM) contained in carbonaceous chondrites has witnessed a diverse suite of processes possibly starting from the evolution of the parent molecular cloud down to the protosolar nebula and finally to asteroidal processes that occurred on the chondrites’ parent bodies. Laser desorption coupled with ultra-high-resolution mass spectrometry reveals that the IOM of the Paris meteorite releases a large diversity of molecules. Various molecular families ranging from hydrogenated amorphous carbon to CHNOS aromatic molecules were detected with heteroatoms (nitrogen, oxygen, and sulfur) mainly incorporated within aromatic structures. Molecules bearing nitrogen atoms present a significant variation in aromaticity. These unprecedented results allow the proposal that small molecules bearing heteroatoms could be trapped in the large macromolecular network of the IOM by hydrophobic interactions. This molecular diversity could originate from different sources, such as the soluble organic matter, the hydrothermal alteration inside the Paris’s parent body, or even generated during the IOM extraction procedure. It has to be noted that some of the molecular diversity may reflect fragmentation and rearrangement of the IOM constituents during the laser desorption ionization, although care was taken to minimize such damage.

Distributions of nitrogen and non-nitrogen-bearing species in the LDI-FT-ICR mass spectrum (laser energy of 11%) of Paris IOM (A) and (B), partition of the 14,232 attributions in chemical families (C, CH, CHO, CHS, CHOS, CHN, CHNO, CHNS, or CHNOS). Data for the Paris meteorite.

The search for peptides in Soluble Organic Matter of meteorites

Method development is one of the objectives of the astrophysical community for characterizing the organic matter in objects of the solar system. In this context, we report on the development of an enzyme-catalyzed stereoselective hydrolysis, inspired by the proteomics discipline, which has enabled the indirect detection of peptide sequences in extraterrestrial samples. A proof of concept has been performed on a Murchison extract. We show that our approach can successfully highlight L- and D-amino acids involved in peptide bonds. While we show that some D-amino acids must have been involved in peptide bonds, we cannot at this stage conclude on the indigenous or exogenous nature of these biopolymers. However, our strategy constitutes the first step toward direct UPLC-MS evidence of peptide sequences in extraterrestrial samples. It should thus contribute to deepening knowledge on the molecules available in the solar system, hence providing new clues about their chemical history, especially on Earth.

Evolution of the signals of amino acids in Murchison water extracts. The internal standard, i.e., trimethionine, was added to the sample just before UPLC-MRM MS analysis. An asterisk (*) after an amino acid’s name means that its area was divided by 5 just to be shown on the same scale as the other amino acids.

Visualization and identification of single meteoritic organic molecules by atomic force microscopy

Using high-resolution atomic force microscopy (AFM) with CO-functionalized tips, we atomically resolved individual molecules from Murchison meteorite samples. We analyzed powdered Murchison meteorite material directly, as well as processed extracts that we prepared to facilitate characterization by AFM. From the untreated Murchison sample, we resolved very few molecules, as the sample contained mostly small molecules that could not be identified by AFM. By contrast, using a procedure based on several trituration and extraction steps with organic solvents, we isolated a fraction enriched in larger organic compounds. The treatment increased the fraction of molecules that could be resolved by AFM, allowing us to identify organic constituents and molecular moieties, such as polycyclic aromatic hydrocarbons and aliphatic chains. The AFM measurements are complemented by high-resolution mass spectrometry analysis of Murchison fractions. We provide a proof of principle that AFM can be used to image and identify individual organic molecules from meteorites and propose a method for extracting and preparing meteorite samples for their investigation by AFM. We discuss the challenges and prospects of this approach to study extraterrestrial samples based on single-molecule identification.