Variables didactiques: pour différencier cette activité en fonction des connaissances et compétences des élèves, l’enseignant·e peut faire varier certaines valeurs de ces variables.
En choisissant dans la consigne initiale de proposer 7 véhicules et 16 roues, les procédures par tâtonnement, ajustement d'essais successifs, dessins et opérations sont toutes possibles. La procédure d'essais successifs est peu privilégiée avec ces choix de valeurs.
Pour favoriser la procédure experte par ajustements ciblés (pour diminuer d'un nombre donné de roues, par exemple 2, sans changer le nombre total de véhicules, il suffit de remplacer 2 tricycles par 2 vélos), il convient de choisir un nombre plus grand de véhicules et de roues, par exemple 25 véhicules et 65 roues.
L'effet est de favoriser la procédure par ajustement ciblés au détriment des autres procédures par tâtonnement qui deviennent alors trop longues et augmentent la probabilité d'erreurs.
Différenciation:
Pour guider les élèves qui ont des difficultés:
Utilisation d’images afin de différencier les tricycles et les vélos.
Favoriser par le dessin des procédures par tâtonnement (dessiner 1 tricycle puis dénombrer les roues, idem avec 2 tricycles, puis 1 vélo, ...).
Permettre de manipuler du matériel pour représenter les roues (jetons, ...), les véhicules (boîtes, ficelles...)
Afin de faciliter l’appréhension des deux critères, faire vivre un critère à la fois avec par exemple « Il y a 8 roues, combien y a-t-il de vélos? », « Il y a 9 roues, combien y a-t-il de tricycles ?»
D'autres élèves de la classe pourraient se montrer plus rapides dans la résolution du problème proposé:
Leur demander de trouver plusieurs procédures de résolution afin de valider leur réponse.
Leur demander de comparer leurs procédures : laquelle est la plus rapide? Laquelle utilise le moins d’essais intermédiaires avant d’aboutir au résultat? Les résultats obtenus sont-ils les mêmes ?
Proposer un défi avec d'autres valeur des variables didactiques, par exemple avec 25 véhicules et 65 roues.