AGORA High-resolution Galaxy Simulations Comparison Project
Welcome to the AGORA Project (Assembling Galaxies Of Resolved Anatomy)! We investigate galaxy formation with high-resolution simulations and compare the results across code platforms and with observations. This is an one-of-a-kind, inter-institutional effort by more than 160 participants from over 60 institutions worldwide (as of 2024) to collectively raise the predictive power of numerical galaxy formation simulations. We welcome anybody who is interested in participating in the Project. Click the image on the right to see an 1-slide introduction to the Project.
This research uses resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility. We also thank the support from the University of California High-Performance AstroComputing Center and the National Science Foundation.
IMPORTANT ANNOUNCEMENTS
● [New!] The 12th annual AGORA Workshop was held online on Aug. 8, 2024. To learn more, click the Workshops tab.
● [New!] The first regional AGORA mini-workshop was held in Seoul, Korea, May 7-10, 2024. To learn more, visit its dedicated website.
● The AGORA Paper VI ("CGM") was published in ApJ in 2024: [ADS] [arXiv] [local] [intro]
● The AGORA Paper V ("Satellites") was published in ApJ in 2024: [ADS] [arXiv] [local] [intro]
● The AGORA Paper IV ("CosmoRun-2") was published in ApJ in 2024: [ADS] [arXiv] [local] [intro] [press release(ES)] [press release(SE)] [press release(MX)]
● The simulation snapshots introduced in AGORA Papers II and III are now on FlatHUB. To learn more, click the Tools+Data tab.
● The AGORA Paper III ("CosmoRun") was published in ApJ in 2021: [ADS] [arXiv] [local] [intro] [talk] [talk(ES)] [press release(ES)]
● The AGORA Paper II ("Disk") was published in ApJ in 2016: [ADS] [arXiv] [local]
● The 1st paper of the Project ("Flagship paper") was published in ApJS in 2014: [ADS] [arXiv] [local] [press release(EN)]
PROJECT GOALS
● AGORA Project goals and rationale. For details, see the Project's Flagship paper (ADS, arXiv, press release). [Read more]
□ In the AGORA Project (Assembling Galaxies Of Resolved Anatomy; formerly known as Santa Cruz High-resolution Galaxy Simulation Comparison Project), we aim to:
Inaugurate a lasting infrastructure for comparing high-resolution galaxy formation simulations across different high-resolution numerical platforms
Establish isolated and cosmological initial conditions so each participating group can run a suite of simulations in the coming years
Invite (but not require) each of the participating code groups to perform two types of high-resolution galaxy formation simulations (isolated galaxy and cosmological zoom-in galaxy) with resolution of ~100 parsecs
Analyze and compare the resulting simulations at several epochs and in multiple dimensions; at the end, go a step further to include comparisons with observational data
Focus on science-based, multi-platform research, rather than merely an one-time code comparison; use this project as a springboard to launch many science-oriented comparison endeavors
Raise the predictive power of the numeircal galaxy formation collectively by ensuring the reproducibility of numerical experiments
Maintain healthy and vibrant collaboration through annual workshops, and online meetings between them
□ Early history and rationale:
AGORA Project was launched during its 1st Workshop in 2012 at UC Santa Cruz. The initial project infrastructures were built and the proof-of-concept simulations were carried out in 2012-2013, which led us to achieve its first measurable objective in late 2013, the Project's "Flagship paper" (published in 2014).
All the main simulation groups in the world were represented (in many cases by their leaders), and through extremely constructive discussion we were able to reach consensus on a wide variety of key issues. These include common initial conditions for cosmological zoom-in simulations and isolated disk simulations, common physics packages such as ultraviolet background and cooling functions, and common analysis tools including yt.
People have signed up to be key contacts for all the simulation groups, titles and topics of the major papers to be produced by the Project were agreed upon with at least one person tentatively agreeing to take charge of each.
It is remarkable that we have launched this project at the time when several key technologies have just become available including the simulation codes, the MUlti-Scale Initial Conditions generator (MUSIC) for simulation ICs, and the yt code for analyzing the outputs from many simulations. This project will be state-of-the-art in every respect, and in fact will advance the entire field of galaxy simulations.
COLLABORATION STRUCTURE
● We have formed 4 task-oriented working groups and 9 science-oriented working groups, along with a Project Steering Committee. We have also formed several "paper groups" with multiple working groups engaged to report our research in articles. [Read more]
□ Task-oriented Working Groups (I-IV): click the Groups tab to learn more
Working Group I - Common Physics and Introduction to Project
Working Group II - Common ICs: Isolated
Working Group III - Common ICs: Cosmological
Working Group IV - Common Analysis
□ Science-oriented Working Groups (V-XIII): click the Groups tab to learn more
Working Group V - Isolated Galaxies and Subgrid Physics
Working Group VI - Dwarf Galaxies in Cosmological Simulations
Working Group VII - Dark Matter
Working Group VIII - Satellite Galaxies
Working Group IX - Characteristics of Cosmological Galaxies
Working Group X - Outflows
Working Group XI - High-redshift Galaxies
Working Group XII - Interstellar Medium
Working Group XIII - Black Hole Accretion and Feedback
□ Examples of Paper Groups: click the Groups tab to learn more
Paper Group "Flagship"
Paper Group "Disk"
Paper Group "CosmoRun"
+ many more
□ AGORA Steering Committee
Tom Abel (Stanford University)
Piero Madau (University of California at Santa Cruz)
Lucio Mayer (University of Zurich)
Joel Primack (University of California at Santa Cruz)
Romain Teyssier (University of Zurich)
James Wadsley (McMaster University)
+ Ji-hoon Kim (Seoul National University, Project Coordinator)
PARTICIPATING CODES
● The cohort of numerical codes that have shown interest in participating in the Project include (but are not limited in future studies to) the following. Each participating code is represented by point persons who volunteered to be liaisons for isolated and/or cosmological simulations. Participating codes that are in the actual comparison may differ in each paper. [Read more]
□ AREPO: Anna Genina, Volker Springel
□ ART-I (NMSU): Daniel Ceverino, Anatoly Klypin, Santi Roca-Fabrega, Sebastian Trujillo-Gomez
□ ART-II (Chicago): Robert Feldmann, Nick Gnedin, Sam Leitner
□ CHANGA: Johnny Powell, Tom Quinn, Hector Velazquez, Spencer Wallace
□ ENZO: Mike Butler, John Forbes, Ji-hoon Kim, Christine Simpson, John Wise
□ GADGET-2/3/4: Junhwan Choi, Ken Nagamine, Jose Onorbe, Miguel Rocha, Ikkoh Shimizu, Keita Todoroki
□ GADGET-SPHS: Alexander Hobbs, Justin Read
□ GASOLINE: Ben Keller, Sijing Shen, James Wadsley
□ GCD+: Daisuke Kawata
□ GEAR: Loic Hausammann, Yves Revaz
□ GIZMO/P-SPH: Philip Hopkins, Alessandro Lupi
□ NYX: Wolfram Schmidt (isolated runs only)
□ PKDGRAV-2: Javiera Guedes, Mike Kuhlen (cosmological runs only)
□ RAMSES: Oscar Agertz, Oliver Hahn, Santi Roca-Fabrega, Romain Teyssier
□ SWIFT: Yves Revaz
HOW TO JOIN US & HOW TO USE AGORA RESOURCES
● Want to join the AGORA Collaboration? Want to use the AGORA ICs, simulation datasets, and more? [Read more]
□ If you are looking for the AGORA common initial conditions (ICs), examples of common analysis yt scripts used in the Project, or the isolated/cosmological galaxy simulation snapshots produced by AGORA, click the Tools+Data tab above.
□ Consider joining the Collaboration with no obligation, especially if you want to learn more about the AGORA common ICs and analysis scripts used in the Project. Simply send an email to the Project coordinator. Contact us if you have any other question, too!