Зразки завдань для перевірки навичок читання мовчки для учнів 3, 4 класів
Відповідно до наказу МОН України № 1/ 9-74 від 28.01.2014р « Щодо контролю та оцінювання навчальних досягнень учнів початкових класів ЗНЗ»
Читання мовчки
Перевіряється вміння прочитати незнайомий художній текст і зрозуміти його.
Читання мовчки перевіряється і оцінюється раз на семестр, починаючи з 4 класу (у 3 класі така перевірка здійснюється з діагностичною метою і обов’язковому оцінюванню не підлягає).
Розуміння прочитаного виявляється за допомогою завдань тестового характеру: школярам пропонується 12 запитань за текстом з трьома варіантами відповідей на вибір. Запитання охоплюють фактичний зміст твору, головну думку та окремі особливості художньої мови.
Орієнтовні вимоги оцінювання читання мовчки: правильна відповідь на кожне запитання за прочитаним текстом оцінюється 1 балом.
У виведенні балів враховується:
- швидкість читання мовчки – учень, швидкість читання якого нижча за нижчий з нормативних показників, одержує на 1 бал менше;
- наявність зовнішніх артикуляційних рухів – учень, який ще не позбувся зовнішніх артикуляційних рухів, одержує на 1 бал менше.
Показники темпу читання мовчки
Клас
3
4
І семестр
85-110 сл/хв
100-150 сл/хв
ІІ семестр
90-140 сл/хв
110-170 сл/хві більше
Примітка: перше (менше) число у кожному із зазначених показників визначає обов’язковий рівень, досягнення якого впливає на оцінювання; друге число вказує бажаний (перспективний) результат розвитку читацького уміння і використовується переважно для самоконтролю і самооцінки учнів.
Читання мовчки
3 клас
ІІ семестр
Ліхтарник
Серед зелених луків і дрімучих лісів текла річка. Повновода, глибока, але тиха й ласкава. Багато віків несла вона свої чисті води. Рікою плавали човни й навіть катери.
Жив на березі ріки старий ліхтарник. Увечері сідав він у човник, плив на середину ріки, засвічував ліхтар.
До світанку блимав посеред річки вогник, показував дорогу. Лагідно хлюпались об берег хвилі — тішилась ріка: люблять її люди й вона людям потрібна.
Та ось людям знадобилося багато дерева на столи й стільці. Вирубали вони ліси по берегах ріки. Здалося також людям, що зелені луки — це непотрібні розкоші. Зорали луки, посіяли кукурудзу.
Виснажилися студені джерела, задихнулась від спраги ріка й померла. Кілька років на тому місці, де плавали човни й катери, весною дзюрчав струмок, а згодом і він засох. Перетворилося русло ріки на город.
Про річку нагадував лише стовп, до якого ліхтарник за звичкою щовесни прикріплював ліхтар. Але над ним усе рідше збиралися хмари. Палаючі вітри прилітали з пустелі й стукали в хати людей.
Як тільки на землю сідали сутінки, старий ліхтарник ішов на капустяне поле й засвічував на стовпі ліхтар.
Маленький Сергійко запитав:
— Дідусю, навіщо ви засвічуєте ліхтар? Ріки ж давно немає.
— Щоб люди краще бачили свою дурість.(192 сл.)
(В. Сухомлинсъкий)
________________________________
Читання мовчки
Тестове завдання до тексту В . Сухомлинського «Ліхтарник»
уч________3 класу
_________________________________________________
1. Річка текла серед ...
А) пшеничного поля;
Б) місто ;
В) луків та лісів.
2. Річка була ..
А) повновода ,глибока;
Б) повновода, мілка ;
В) повновода ,грізна.
3. На березі річки жив…
А)рибалка;
Б) ліхтарик;
В) ліхтарник.
4. Ліхтарник кожен вечір…
А)ставив рибальські сіті;
Б) засвічував ліхтарик ;
В) засвічував маяк.
5. Та ось люди …
А) вирубали ліси, зорали луки, посіяли кукурудзу.
Б) насадили ліси, зорали луки , посіяли кукурудзу.
В) посадили капусту, зробили столи та інші меблі.
6. Річка...
А) поповнювалася дощовими водами;
Б) задихнулась від спраги;
В) живилася підземними водами.
7. Через кілька років русло річки перетворилося на …
А) болото;
Б) пустелю;
В) город.
8. Про річку нагадував …
А) ліс;
Б) город;
В) стовп.
9. Над ліхтариком усе рідше збиралися …
А) метелики;
Б) хмари ;
В)птахи.
10. Старий ліхтарник ходив на капустяне поле, коли…
А) сідало сонце;
Б) сідав туман;
В) сідали сутінки;
11. На запитання онука дід відповів:
А) - Щоб люди краще бачили дорогу.
Б) - Щоб люди краще бачили свою дурість.
В) - Щоб люди краще бачили село.
12. Головна думка оповідання криється в таких речення.
А) Людям багато знадобилося дерева на столи й стільці.
Б) Перетворилося русло ріки на город.
В) Щоб люди краще бачили свою дурість.
Оцінка _________________
4 клас
Читання мовчки
І семестр
Український віночок
Мабуть, кожна дівчинка вміє плести віночок – із жовтих сонечок кульбаб, із кленових листочків короною, чи просто з’єднати в барвисте коло лісові і лугові квіти.
А чи знаєте ви, що український віночок не просто краса, а й оберіг, «знахар душі», бо в ньому є така чаклунська сила, що біль знімає, волосся береже?
Впліталося до віночка багато квітів: ружі, калини, безсмертника і деревію, незабудки, чорнобривців, любистку, волошки, ромашки.
Найпочесніше місце належало деревію. Ці дрібненькі білі квіточки здалека нагадують велику квітку, її називають в народі деревцем. Коли квіти перецвітають, вітер розносить насіння далеко-далеко.
Та де б не проросла ця рослинка, вона завжди цвіте. Тому люди і вплели її до віночка, як символ нескореності.
А барвінок – до людської оселі, до городу тягнеться. Взимку відвар барвінку п’ють од простуди, влітку барвінком прикрашають святковий хліб, хату, плетуть з нього весільні букети. Цілий рік його шанують, бо вважають символом життя.
А безсмертник дарує здоров’я нашому роду людському. Чи виразки, чи вавочки – дуже гоїть, тому й співають славу цьому цвітові.
Цвіт вишні та яблуні – символи материнської любові.
Ружа, мальва і півонія своєю красою людей милують. У віночку ж це символи віри, надії, любові.
Любисток, васильки люблять не лише за пахощі, а й за лікувальні властивості. Ними миють волосся, освіжають помешкання, купають у відварі маленьких дітей. Тому у віночку – це символ людської відданості.
А ромашка у віночку наймолодша за своїм віком. Її вплели у віночок люди, коли переконалися, що вона приносить не лише здоров’я, але й доброту та ніжність, і вплітають її разом з гронами калини та цвіту яблуні, вишні. Переплітають з вусиками хмелю – символу гнучкості й розуму.
А всього в українському віночку – 20 квіточок, кожна – лікар, оберіг.
Плести віночки – це ціла наука і дійство. Наші прабабусі знали різні секрети: як плести і коли, як зберегти квіти у вінках.
У вінок в’язали різнокольорові стрічки. Для цього треба знати символи.
Люди вірили у силу стрічок і віночків. (309 слів)
За О. Кириченком
________________________________
Читання мовчки
Український віночок
уч________4 класу
____________________________________________________________
1. Визнач жанр твору.
А) казка;
Б) легенда;
В) оповідання.
2. Яка тема твору?
А) про історію українського вінка;
Б) про значення квітів, з яких складають вінки;
В) про те, як складати вінки.
3. Якій квітці належить найпочесніше місце у вінку?
А) деревію;
Б) калині;
В) незабудці.
4. Яке речення з тексту?
А) А барвінок – до людської оселі, до городу тягнеться.
Б) А барвінок – до людської оселі тягнеться.
В) А барвінок – до городу тягнеться.
5. Що дарує людському роду безсмертник?
А) красу;
Б) силу;
В) здоров’я.
6. Які квіти є символами віри, надії, любові?
А) ружа, барвінок, мальва;
Б) ружа, ромашка, півонія;
В) ружа, мальва, півонія.
7. У відварі яких рослин купають маленьких дітей?
А) безсмертника і любистку;
Б) любистку і васильків;
В) волошок і васильків.
8. Яка квітка у віночку наймолодша за віком?
А) чорнобривець;
Б) волошка;
В) ромашка.
9. Який цвіт є символом материнської любові?
А) вишні та яблуні;
Б) вишні та груші;
В) сливи та яблуні.
10. Скільки всього квіточок в українському віночку?
А) десять;
Б) двадцять;
В) п’ятнадцять.
11. Що ще, крім квітів, в’язали у віночок?
А) нитки;
Б) стрічки;
В) пояси.
12. Чи легко плести український вінок? Яка із нижче наведених відповідейіз тексту?
А) легко;
Б) важко;
В) це ціла наука і дійство.
Оцінка______
4 клас
Читання мовчки
ІІ семестр
Яка тварина найбільш хижа в світі?
Багато хто вважає, що найбільш хижими тваринами є лев, тигр, леопард, вовк або рись, тобто великі хижаки.
Леву, щоб наїстися вволю, досить двадцяти кілограмів м’яса. Залишивши недоїдки шакалам, ситий лев відправляється куди-небудь спати й перетравлювати їжу. А перетравлюється вона дуже довго, хижаки майже не пережовують м’ясо, вони рвутьйого й ковтають шматками. Їсть лев не так вже часто – раз у два – три дні.
Виходить, що не такий вже лев ненаситний. На день цьому великому хижакові в середньому доводиться менше десяти кілограмів їжі.
Тигр також їсть рідко й надовго наїдається. До того ж, коли у нього знову прокидається апетит, він йде не полювати, а доїдати залишки прихованої здобичі.
Нерідко про великих хижаків-звірів кажуть: «люті», «кровожерливі». Але це не зовсім так. Часом між хижаками дійсно виникають криваві поєдинки. Але які б люті не були противники, їхні бійки рідко закінчуються загибеллю найслабшого. Набагато частіше переможений, визнавши свою поразку, йде зализувати рани, а переможець не прагне добити противника, не переслідує його.
Але є звір, забіякуватість якого здивувала б будь-якого лева або тигра, зрозуміло, якби вони вміли дивуватися. Цей звір – звичайний кріт. Товстий, напівсліпий землекоп зовсім не такий добряк, як здається. Якщо підземні ходи двох кротів перетнуться та їх господарі зустрінуться, почнеться битва не на життя, а на смерть. Переможеному не буде пощади.
Кріт ненаситний. Вовчий, тигриний або левовий апетит – дрібниця у порівнянні з апетитом крота. Кріт за добу з’їдаєстільки, скількиважить. Жахливоподумати, якби кожний лев з’їдавщоднястільки, скількиважить сам. Тоді навколо дуже швидко не було б ні зебр, ні антилоп, ні жираф, та й усім іншим левовим сусідам довелося б погано. Кріт полює вдень і вночі. Його здобич – земляні черв’яки, личинки, жуки. Але якщо кріт відшукає зимою сонну ящірку, він її з’їсть. Знайдевлітку гніздо на землі – пташенята підуть на обід.
Але ще більшою ненажерливістю славиться землерийка. Вона з’їдає за добу у чотири рази більше, ніжважить сама. (314 слів)
М. Беденко
____________________
Читання мовчки
Яка тварина найбільш хижа в світі?
уч________4 класу
______________________________________________________
1.Визнач жанр твору.
А) казка;
Б) повість;
В) науково-художнє оповідання.
2.Яка тема твору?
А) про лева;
Б) про хижаків;
В) про те, яка тварина найбільш хижа в світі.
3.Як часто їсть лев?
А) щодня;
Б) раз у два – три дні;
В) раз у тиждень.
4.Яке речення з тексту?
А) Виходить, що лев ненаситний.
Б) Виходить, що не такий вже лев ненаситний.
В) Виходить, що лев такий ненаситний.
5.Хто доїдає залишки прихованої їжі?
А) лев;
Б) тигр;
В) кріт.
6.Як закінчуються бійки між хижаками?
А) завжди загибеллю найслабшого;
Б) рідко загибеллю найслабшого;
В) визнавши свою поразку, переможений йде зализувати рани (завжди).
7.Як нерідко кажуть про великих хижаків-звірів?
А) сердиті, люті;
Б) люті, кровожерливі;
В) злі, кровожерливі.
8.Слово «забіякуватість» означає рису:
А) того, хто не любить битися;
Б) того, хто прагне бійки;
В) того, хто завжди розпочинає бійку.
9.Битва не на життя, а на смерть характерна:
А) тиграм;
Б) кротам;
В) левам.
10.Скільки їжі з’їдаєкріт?
А) десять кілограмів;
Б) двадцять кілограмів;
В) стільки, скільки важить сам.
11.Коли полює кріт?
А) вдень;
Б) вночі;
В) вдень і вночі.
12. Кого ж із тексту можна назвати найбільш ненажерливою твариною?
А) лева;
Б) тигра;
В) крота.
Оцінка___________
1.2 Види вправ для усних обчислень
Вправи з усних обчислень мають пронизувати увесь урок. Їх можна поєднувати з перевіркою домашніх завдань, закріпленням вивченого матеріалу, опитуванням учнів. Поряд з цим у практиці роботи вчителів є хороша традиція: на кожному уроці спеціально відводити 5-7 хв для усних обчислень, проводити так звану усну лічбу. Матеріал для цього етапу уроку вчитель запозичує з підручника, а також із спеціальних збірників усних задач і вправ.
Щоб навички усних обчислень постійно вдосконалювались, треба встановити правильне співвідношення в застосуванні усних і письмових прийомів обчислень, а саме обчислювати письмово тільки тоді, коли усно обчислити важко [29, 56].
Прийоми як усних, так і письмових обчислень ґрунтуються на знанні нумерації, конкретного змісту і властивостей арифметичних дій, зв’язку між результатами та компонентами дій, а також на знанні зміни результатів дій залежно від зміни одного з компонентів. Проте між прийомами усних і письмових обчислень є істотні відмінності [9]:
1)Усні обчислення виконують, починаючи з одиниць вищого розряду, а письмові – з нижчого (винятком є ділення). Наприклад:
450 + 120 = (400 + 50) + + 357
+ (100 + 20) = (400 + 100) + 246
+ (50 + 20) = 500 + 70 = 570 603
Обчислення виконано усно; Обчислення виконано письмово;
його виконують, починаючи його виконують, починаючи з з одиниць вищого розряду. одиниць нижчого розряду.
2) Проміжні результати під час усних обчислень зберігають у пам’яті, під час письмових – відразу записують.
3) Прийоми усних обчислень для тієї самої дії над парою чисел можуть бути різні залежно від особливостей прикладу і тієї властивості, яку використовують, а письмові обчислення виконують за точніше окресленим правилом, прийнятим для кожної арифметичної дій.
Наприклад:
48·15=48·(10+5)= 483
=48·10+48·5=480+ х
+240=720 15
48·15=48·(5·3)=48·5·3=
=240·3=720 2415
48·15=(40+8)·15=40·15+ 483
+8·15=600+120=720
Використовуються різні прийоми 7245усних обчислень Використовується завждитой самий прийом письмового множення
4) Розв’язування під час усних обчислень записують у рядок (якщо це потрібно), а в письмових обчисленнях – стовпчиком .
5) Усні обчислення звичайно виконують над числами в межах 100 і над багатоцифровими числами, якщо обчислення над ними зводяться до випадків у межах 100, а письмово виконують дії над багато-цифровими числами тоді, коли усно обчислити важко.
Обчислювальні терміни вивчають у тісному зв’язку з розглядом певних питань теорії. Питання про місце введення обчислювальних прийомів та методику їх вивчення розглянуто у відповідних концентрах.
Виховуючи любов до усних вправ, вчитель допомагає учням активно працювати з навчальним матеріалом, пробуджує у них прагнення удосконалювати способи обчислень і розв’язування задач, менш раціональні замінювати досконалішими та економнішими. А це – важлива умова свідомого засвоєння матеріалу. Спрямованість мислительної діяльності на пошук раціональних шляхів розв’язання проблеми свідчить про варіативність мислення [19, 57].
Розв’язуючи певну задачу, обчислюючи вираз, учень повинен уважно розглянути умову завдання, зуміти помітити всі його особливості і в кожному конкретному випадку обрати ті шляхи, які простіше й швидше приводять до мети. Таким чином, при виконанні усних обчислень можна говорити про критичність мислення, тобто уміння оцінити запропоновані варіанти розв’язання і обрати більш раціональний підхід до виконання даного завдання.
Усні вправи також сприяють розвитку мовлення учнів, якщо з самого початку навчання вводити в тексти завдань і використовувати при обговоренні вправ математичні терміни. Навички правильного, точного і лаконічного мовлення, що формуються на уроках математики, позитивно впливають на загальну мовленнєву культуру. Важливо, щоб вчитель сам слідкував за своїм мовленням і формулював завдання ясно, чітко, лаконічно і послідовно.
Навички усних обчислень формують у процесі виконання учнями різних вправ. Розглянемо основні види їх [9; 19; 29; 41 та ін.].
1. Знаходження значень математичних виразів. Для вправ пропонують у тій або іншій формі математичний вираз, треба знайти його значення. Ці вправи мають багато варіантів. Можна пропонувати числові математичні вирази і буквені (вираз із змінною), при цьому буквам надають числових значень і визначають числове значення знайденого виразу.
Наприклад:
1) Знайдіть різницю чисел 100 і 9.
2) Знайдіть значення виразу с – k , якщо с = 100, k = 9.
Вирази можна запропонувати в різній словесній формі: від 100 відняти 9; 100 мінус 9; зменшуване 100, від’ємник 9, знайти різницю; знайти різницю чисел 100 і 9; зменшити 100 на 9 і т.д. Ці формулювання використовує не тільки вчитель, а й учні.
Вирази можуть бути на одну і більш як на одну дію. Вирази з кількома діями можуть містити дії одного ступеня або різних ступенів, наприклад: 47 + 24 - 56, 72 : 12 · 9, 400 – 70 · 4 тощо; можуть бути з дужками або без дужок: (90 - 42) : 3, 90 – 42 : 3.
Як і вирази на одну дію, вирази на кілька дій мають різне словесне формулювання, наприклад: від 90 відняти частку чисел 42 і 3; зменшуване 90, а від’ємник виражений часткою чисел 42 і 3 та ін.
Вирази можуть бути задані в різній області чисел: з одноцифровими числами (7 - 4), з двоцифровими (70 - 40, 72 - 48), з трицифровими (700 - 400, 720 - 480) і т.д., з абстрактними та іменованими числами (200 - 15, 2м –15см). Однак, як правило, прийоми усних обчислень повинні зводитися до дій над числами в межах 100. Так випадок віднімання чотирицифрових чисел 7200 - 4800 зводиться до віднімання двоцифрових чисел (72сот. - 48сот.), отже, його можна давати для усних обчислень.
Вираз можна дати у формі прикладу (усно або у вигляді запису): 7+2, 30 – 24 : 6, А можна дати і в інших формах, наприклад у формі таблиці:
У 1 класі для цієї мети можна використати цікаві фігури.
Завдання на знаходження значень виразів можна безпосередньо пов’язувати з різними питаннями початкового курсу математики: з нумерацією, величинами, дробами тощо. Наприклад, знайти різницю найменшого трицифрового числа і найбільшого одноцифрового; знайти, скільки сантиметрів в 1/5м тощо.
Основне призначення вправ на знаходження значень виразів – виробити в учнів міцні обчислювальні навички. Водночас вправи на знаходження значень виразів сприяють і засвоєнню питань теорії арифметичних дій.
2. Порівняння математичних виразів. Ці вправи мають варіанти. Можна взяти два вирази і встановити, чи рівні їхні значення, а якщо не рівні, то яке з них більше чи менше. Наприклад, треба порівняти вирази і замість зірочок поставити знак ,,>“, ,,<“ або ,,=“ :
6 + 4 * 4 + 6 20 + 7 * 20 + 5
20 · 8 * 1 8 · 10 8 · 9 + 8 * 8 · 10
При цьому знак відношення можна вибрати на основі або знаходження значень даних виразів і порівняння їх (20·8<18·10, оскільки 160 < 180), або застосування відповідних знань: переставної властивості додавання (6 + 4 = 4 + 6), зміни результатів дій залежно від зміни одного з компонентів (20 + 7 > 20 + 5) тощо.
Можна запропонувати вправи, які вже мають знак відношення і один із виразів, а другий вираз треба скласти або доповнити. Наприклад, треба закінчити запис: 8 · (10 + 2) = 8 · 10 + …
Можна пропонувати вправи на порівняння виразів із змінною, наприклад, замість зірочки треба поставити знак ,,>“, ,,<“ або ,,=“, наприклад: а – 17 х а - 12.
Вирази в таких вправах можуть включати різний числовий матеріал: одноцифрові, двоцифрові, трицифрові числа і т. д.; абстрактні та іменовані числа. Вирази можуть бути з різними діями. Основне завдання таких вправ – сприяти засвоєнню теоретичних знань про арифметичні дії, їх властивості, рівності, нерівності тощо. Крім того, вправи на порівняння виразів допомагають і виробленню обчислювальних навичок.
3. Розв’язування рівнянь. Як усні вправи пропонують рівняння. Це насамперед найпростіші рівняння (х+2=10) і складніші (15·х- - 9 = 51).
Рівняння можна пропонувати в різних формах, наприклад:
1) Розв’яжіть рівняння 24 : х = 3.
2) Від якого числа треба відняти 18, щоб дістати 40?
3) Знайдіть невідоме число: 73 – х = 73 - 18.
4) Я задумала число, помножила його на 5 і дістала 85. Яке число я задумала?
Призначення таких вправ – виробити вміння розв’язувати рівняння, допомогти учням засвоїти зв’язки між компонентами і результатами арифметичних дій, а також сприяти виробленню обчислювальних навичок.
4. Розв’язування задач. Для усної роботи пропонують як прості, так і складені задачі. Мета цих вправ – виробити в учнів уміння розв’язувати задачі, допомогти засвоєнню теоретичних знань і виробленню обчислюваль-них навичок.
Під час роботи в школі учителі змінюють і доповнюють основні види усних вправ. Різноманітність вправ збуджує інтерес у дітей, активізує їхню розумову діяльність [19, 57].
У початкових класах методисти рекомендують якомога більше усних вправ проводити у формі гри. Розглянемо найпоширеніші математичні ігри.
Гра ,,Мовчанка“. Для гри беруть яку-небудь геометричну фігуру, у центрі якої і по контуру записують числа. Біля числа, розміщеного в центрі, ставлять знак однієї з арифметичних дій. Сталим є число, записане в центрі. Гру проводять так: учитель показує указкою на одне з чисел, записаних по контуру, а діти виконують зазначену дію цього числа з числом, записаним у центрі. Викликаний учень записує результат. Решта учнів підняттям руки сигналізує про допущену помилку. Всю роботу виконують мовчки. Гру можна змінити: учитель показує на число, а діти мовчки показують результат на розрізних цифрах. Великий інтерес викликають у дітей красиво оформлені “мовчанки”, наприклад ,,Хто найкращий капітан чи космонавт?“.
Колові приклади.
32 : 4 36 - 9 24 : 8
3 · 12 8 + 16 27 + 5
Це колові приклади. Їх складають так: перший приклад беруть довільно (32 : 4), результат цього прикладу повинен бути першим компонентом наступного прикладу (8 + 16), результат цього прикладу буде першим компонентом прикладу (24 : 8) і т. д., результат останнього прикладу буде першим компонентом першого (32). Потім ці приклади записують у довільному порядку.
Гру проводять так: приклади записують на дошці або на плакаті; учні розв’язують перший приклад; викликаний учень називає не результат, а той приклад, який починається з числа, що дорівнює результату (8 + 16); діти розв’язують цей приклад і називають наступний, що починається з результату останнього прикладу: 24 : 8 і т. ін., поки не дістануть першого прикладу [9].
Колові приклади можуть складати й самі учні.
Відгадування задуманих приладів . На дошці пишуть приклади. Вчитель називає відповідь одного з них (не першого), а учні повинні знайти задуманий учителем приклад за його відповіддю. У цьому разі учні розв’язують усі або майже всі приклади, щоб знайти потрібний. Можна змінити гру: викликати одного учня і повернути його обличчям до класу, а всім учням запропонувати розв’язати в думці (“задумати”) який-небудь приклад і назвати лише його відповідь; викликаний учень повинен назвати задуманий приклад. Роботу викликаного учня, якщо він розв’язав кілька прикладів, можна оцінити.
Магічні, або цікаві, квадрати . Це квадрати, які складаються з 9, 16, 25 кліток. У клітках мають бути записані такі числа, сума яких у всіх напрямах (рядках, стовпчиках і діагоналях) однакова. В одному випадку всі числа задані – квадрат заповнений (див. перший квадрат). Треба перевірити, чи є квадрат магічним. У другому випадку в квадраті не всі числа задані, але названо суму (див. другий квадрат). Треба заповнити квадрат. У третьому випадку і числа не всі задані і суму не названо, треба ще знайти цю суму і після цього заповнити квадрат (див. третій квадрат) [4].
Сума 15
Гра ,,Лото“. Цю гру можна використати для закріплення знань табличного множення, а також табличного додавання. Складають картки самі учні під час вивчення і запам’ятовування таблиць множення. До них включають такі табличні результати, які входять до різних таблиць (16, 18, 24, 36), і їх часто учні плутають (54, 56), а також такі, що порівняно важко запам’ятовуються (27, 28, 42, 49, 63, 64, 72, 81).
Після вивчення таблиці множення 4 з усної лічби діти записують у зошитах відповіді прикладів: 2 · 8, 9 · 2, 4 · 6, 3 · 9, 4 · 9, 4 · 8, 4 · 7.
Відповіді вчитель перевіряє і записує на дошці, а діти – на раніше приготовлених картках (9см Х 15см) в різному порядку. Після вивчення таблиці множення 6 додають числа 42, 54, після множення 7 – 49, 63, 56, множення 8 – 64, 72, множення 9 – 81.
Внаслідок такої роботи картка учня матиме вигляд: ·
Картки інших дітей відрізняються порядком чисел. Вдома кожний учень виготовляє 15 фішок (2см Х 2см) і нумерує їх від 1 до 15. Під час гри в кожного учня лежить картка і фішки з номерами від 1 до 15. Гру проводять у швидкому темпі. Вчитель називає приклад на табличне множення, діти обчислюють і затуляють фішками відповідні числа на картці. Учні, які добре знають таблицю, швидко затуляють фішками потрібні числа, і на момент закінчення гри будуть добрими обліковцями. Перевірку вчитель може провести в кінці або під час гри. Учитель запитує, яку відповідь дістали в 3, або в 1 або в 12 прикладах, оголошує правильну відповідь і з’ясовує помилки.
Є й інші ігри: ,,Кращий обліковець“, ,,Сходинка“, ,,Лабіринт“, ,,Математична естафета“, відгадування чисел, задуманих дітьми, тощо. Усі вони сприяють розвитку навичок усних обчислень. Вибираючи гру, вчитель повинен керуватися тим, що це не самоціль, що тільки та гра на уроці принесе користь, яка за короткий час дає можливість виконати найбільше число операцій і охопити всіх учнів [42, 33].
Треба систематично перевіряти вміння і навички усних обчислень у дітей. Під час усної лічби вчитель спостерігає за роботою окремих учнів і враховує її, виставляючи поурочний бал. Багато вчителів з метою обліку навичок обчислень успішно використовує математичні диктанти . Для цього підбирають 8-10 завдань різних видів вправ з вивченого матеріалу. На уроці вчитель називає кожне завдання 1-2 рази, а всі учні в звичайних або спеціальних зошитах для усної лічби записують відповіді. Під час перевірки, яку проводять на уроці або після уроків, з’ясовують помилки. Математичний диктант часто використо-вують для навчання і тренування в обчисленнях, але іноді він може бути контрольним, і тоді роботу кожного учня оцінюють [41, 35].
Контрольні роботи на перевірку навичок усних обчислень корисно проводити не рідше, як два рази в семестр. Їх проводять у формі математичного диктанту або за варіантами, тексти яких записують на дошці. Зміст контрольних робіт має відповідати програмі і включати раніше вивчений матеріал. Контрольні роботи на усні обчислення треба систематично проводити і в інших класах.
РОЗДІЛ 2. Формування навичок усних обчислень в учнів початкових класів
2.1 Шляхи вдосконалення навичок усних обчислень у молодших школярів
Сам процес виконання усних обчислень за певної методики позитивно впливає на розумовий розвиток молодших школярів, оскільки він потребує виконання розумових операцій: аналізу і синтезу, конкретизації і абстрагування, порівняння, узагальнення.
Системний підхід до виконання усних обчислень ґрунтується на уявленні про діяльність людини як процес розв'язування різного роду задач, що являють собою компоненти цієї діяльності. Згідно з цією концепцією, навчальна задача є елементом учбової діяльності учнів [3, 75].
Дослідженнями вітчизняних психологів встановлено три основні типи активності учнів: репродуктивно-наслідувальний, пошуково-виконавчий і творчий. Кожний із зазначених типів активності виявляється і розвивається в школярів під час роботи виконання усних обчислень [52, 20]. Так, перший тип активності, що виявляється під час засвоєння учнями предметних дій і мовних форм, дає їм змогу успішно засвоїти дії співвіднесення та вибору і виділяти в змісті навчального матеріалу раніше вивчені та нові поняття. Другий тип активності виявляється в тому, що учні можуть самостійно аналізувати зміст завдання, встановлювати зв'язок між відомими і невідомими величинами. Основним виявом третього типу активності є уміння учнів самостійно аналізувати завдання та оригінальним способом його виконувати. Зауважимо, що той чи інший тип активності потребує, щоб у навчанні було створено ситуації, в яких би учні виконували нові за змістом завдання і вчились застосовувати раціональні способи дій. Якщо таких ситуацій на уроці не буває, в учнів не виникає потреби в оволодінні діями і операціями, які сприяють переходу їх на вищий рівень активності. Тривале перебування учнів в стані одного певного типу активності гальмуватиме їх загальний психічний розвиток.
Готовність учнів до виконання усних обчислень залежить також від того, як організовує вчитель аналіз учнями навчального матеріалу. Зазначимо, що в процесі сприймання завдання учні повинні встановити логічний зв'язок між умовою і кінцевою його вимогою, усвідомити основне значення вимоги. При створенні умов, які забезпечують формування в учнів готовності сприймати завдання, великої уваги заслуговує додержання принципу комплексності. Суть цього принципу полягає в тому, щоб у процесі аналізу завдання учні складали певні судження, робили узагальнення, встановлювали раціональний спосіб його виконання.
Принцип комплексності у формуванні умінь виконувати усні обчислення — це також спеціальна організація процесу засвоєння прийомів розумової діяльності: осмислено сприймати і запам'ятовувати, аналізувати, порівнювати, узагальнювати і конкретизувати навчальний матеріал. Сприймаючи завдання, учні виконують цілий ряд розумових і практичних дій: виділяють із змісту важливу інформацію, зіставляють між собою складові частини завдання, встановлюють між ними зв'язок, складають орієнтовний план розв'язування [40, 36].
Щоб усвідомити особливості виконання усних обчислень, учні повинні усвідомити певні структурні етапи, алгоритм міркувань. Важливе значення при усвідомленні цього алгоритму мають спеціально розроблені моделі і схеми, які в наочній формі відображають істотні зв'язки між її об'єктами. Організація діяльності дітей з опорою на такі моделі дає можливість підвести їх до пізнання цих зв'язків.
У початкових класах формуються навички усних обчислень здебільш-шого на застосування загальних прийомів. При цьому учень, спостерігаючи, в якому порядку і над якими числами треба виконати дії, зосереджує увагу саме на обчисленні та швидкості виконання дій.
1. Звичайні приклади
38-3-4 38 + 3-7
3-2 + 4 43-5-12
20-3-6 3-9 + 3
2. Назвіть відповіді прикладів у порядку їх запису в рядках.
100-3-3 3-8-21:9
3. Розкажіть таблиці множення чисел 5 і 6.
4. Назвіть результати зазначених випадків таблиці множення числа 4 і таблиці ділення на 4 (рис. 1).
Рис. 1.
5. Обчисліть вирази на дві дії і повідомте тільки кінцевий результат.
Від числа 50 відняти 15, відняти 7; до числа 17 додати 7. додати 23; 18 плюс 18, мінус 6; 48 мінус 14, плюс 25.
Трудність завдання визначається ступенем його зв'язку з наявним в учнів досвідом, знаннями і уміннями. Чим вища розумова підготовка учнів, тим легшим буде процес засвоєння навчального матеріалу [22, 36].
До ущільнених (комплексних) завдань належать такі, які забезпечують доволі великий обсяг роботи і дають змогу за допомогою певної наочності чи спеціального добору прикладів швидко організувати навчальну діяльність дітей, лаконічно сформулювати умову; залучити до відповідей багато учнів, підтримувати швидкий темп роботи; сприяти посиленню розумового навантаження школярів.
Подамо зразки завдань.
1. Прийом доповнення.
Кожне з чисел 5, 8, 20, 23, 37, 40 доповніть до 45.
2. Прийом постановки завдань одного виду:
а) кожне з чисел 37, ЗО, 7, 14, 28, 55 збільшіть на 36;
б) до числа 12 додавайте послідовно число 6, поки не отримаєте число 66;
в) від числа 90 віднімайте послідовно число 15, поки це буде можливим.
3. Гра "Мовчанка" (рис. 2).
Рис. 2.
4. Обчислення "ланцюжком". Обчислення "ланцюжком" вчителі проводять в усній формі, називаючи числа і дії. Наприклад: до числа 6 додати 4 відняти 3, відняти 2. Оскільки значна частина дітей класу "губить" числа, то краще застосовувати зорово-слухову форму, спираючись на відповідні записи: 240 + 320 :8 :5.
Вираз читають так: "320 плюс 40, поділити на 4, мінус 20".
Ланцюжки можна пропонувати також у формі звичайних виразів:
(320 + 40) : 4 - 20; (300 + 200) • 2 - 400.
У процесі формування навичок усних обчислень важливою є також значимість навчального матеріалу для молодшого школяра. Під значимістю розуміємо важливість тієї інформації, з якої складається зміст завдання і навчальний матеріал в цілому. Зауважимо, що значимість математичного матеріалу — поняття відносне. Певні факти або дії одного завдання можуть бути важливими самі по собі і необхідними для розв'язування наступних. Одному учневі вони можуть бути потрібними для досягнення певних життєвих цілей, другому — бути засобом задоволення пізнавальним інтересів, третьому — допомагати у вивченні правил поведінки. Звідси випливає, що значимість математичного матеріалу може бути навчальною, пізнавальною, діловою, етичною, естетичною, соціальною, виховною тощо.
Щоб значимість навчального матеріалу була умовою ефективного засвоєння знань, треба, щоб його зміст був особисто необхідним для кожного школяра [52, 20]. Значимість навчального матеріалу посідає особливе місце в житті школяра тому, що психіка являє собою апарат по виявленню і відображенню значення предметів і дій. Наприклад, переставна властивість додавання швидко засвоюється і успішно застосовується учнями через те, що вона є необхідною при розв'язанні цілого ряду практичних завдань.
Доведено, що матеріал, який викликає позитивні емоції, швидше запам'ятовується, викликає в учнів бажання швидше його вивчити, а матеріал, що викликає негативні емоції, нерідко не сприймається ними.
Проілюструємо кілька задач для усних обчислень.
1.Відстань 200 м страус пробігає за 12 с, кінь — за 10 с, третьоклас-ник — за 50 с Яку відстань пробіжить третьокласник за одну секунду?
2.Числа 6, 7, 8, 9, 10, 11, 12, 13, 14 треба розмістити в три рядки один під одним так, щоб сума в рядках, стовпчиках по діагоналі дорівнювала 30.
3.У спортивному змаганні Василько набрав 10 очок, а Коля — на 2 очки менше. Скільки очок набрав Коля?
Чи набрав ти очок під час змагань? На скільки більше ти набрав очок від Колі? На скільки менше очок ти набрав від Василька?
Скільки ти набрав очок разом з Колею?
4. Хто з хлопців програв? Василько набрав під час бігу 10 очок, а Коля — на 2 очки менше; під час плавання Коля набрав 15 очок, а Василько — на 6 менше.
Перша задача привертає увагу учнів змістом інформації, яку вони можуть здобути в результаті розв'язання задачі. Друга задача, що містить велику кількість чисел, не зразу викликає в учнів позитивне ставлення до її матеріалу. Деяких учнів числа відволікають від змісту, гальмують пошук зв'язків між даними задачі. Позитивне ставлення до задачі викликається в учнів змістом третьої і четвертої задач.
Щоб викликати в учнів позитивне ставлення до другого завдання, його можна подати в іншій формі: у вигляді «цікавого квадрата», в якому усно треба заповнити порожні клітки числами з даного ряду так, щоб сума їх дорівнювала 30.
Положення щодо організації вивчення навчального матеріалу зумовлені результатами досліджень як психологів, так і фізіологів. Наприклад, дослідження І.П. Павлова свідчать, що одного загального повторення недостатньо для утворення відповідного зв'язку. Водночас багаторазове повторення одних і тих самих дій не удосконалює їх і не сприяє усвідомленню доти, поки учень не переконається в правильності чи помилковості результатів виконаних дій [63, 38].
Таким чином, повторення окремих фактів навчального матеріалу, неодноразове співвіднесення відомих і нових знань у різних варіантах і ситуаціях — це засоби перевірки і контролю досягнутих учнями результатів, підготовки їх до самостійного вибору способу виконання усних обчислень. Це стосується й читання з учнями змісту завдання. Кількаразове читання змісту сприяє тому, що учень починає краще усвідомлювати значення окремих об'єктів, узагальнювати їх і включати в систему знань, здобутих в результаті життєвого досвіду і навчання.
Отже, процес засвоєння математичного матеріалу відбувається тоді, коли його складові компоненти відображаються в психіці школяра.
Успішне засвоєння навичок виконання усних обчислень учнями можливе в умовах взаємодії об'єктивних і суб'єктивних умов навчання. До об'єктивних умов відносять властивості навчального матеріалу (специфіку, форму, рівень трудності, обсяг, структуру); способи подачі; конкретні умови навчальної діяльності школяра, контроль і самоконтроль виконання обчислень.
Наведемо приклад завдання з елементами контролю чи змагання [63].
1. Кругові приклади. їх складають так, щоб перший компонент кожногонаступного був результатом попереднього. Результат останнього прикладудорівнює першому компоненту першого прикладу. Приклади можуть бутияк на одну, так і на дві дії.
а)40-1362-2213 + 6590-60
1+61 27-14 78+ 1230-29
2. Цікаві квадрати (рис.). Заповнення цікавих квадратів не дуже легкасправа для усних обчислень, але в шкільній практиці вони використовуються.тому треба вміти добирати числа, щоб вони утворювали цікавий квадрат.
14
17
5
20
Рис.
Для цього беруть 9 членів арифметичної прогресії, наприклад, 5, 8, 11, 14, 17- 20,23,26,29. Три середніх члени записують по діагоналі квадрата (у нашому прикладі 14, 17, 20), біля найбільшого з них (20) записують найменше число прогресії (5). Це — основа цікавого квадрата. Далі числа квадрата визначають обчисленням."
14 + 17 + 20 = 51 (сума чисел стовпців чи рядків квадрата);
5 + 20 = 25, 51 — 25 = 26.
Отже, у нижній порожній клітці треба записати число 26. Наступним обчисленням можна знайти ліве число середнього ряду і т. д.
Числа квадрата, що становлять його основу, записує вчитель, а доповнюють учні. Гру краще організувати у вигляді командних завдань між рядами парт.
Ці об'єктивні умови набувають певної значимості, якщо співвідно-сяться і вступають у взаємозв'язки із психічними можливостями учнів. Можливості школяра — це складне психічне утворення. Вони об'єднують в його діяльності не тільки певний набутий життєвий досвід, а й рівень та обсяг здобутих знань, умінь і навичок. Провідними їх компонентами є сформованість в учнів способу дій, який являє собою певну систему дій та операцій, необхідних для засвоєння математичних знань, особисті цінності і мотиви процесу учіння. Внутрішні передумови засвоєння знань характеризують ставлення школяра до навчання.
Молодші школярі засвоюють математичну термінологію шляхом наслідування мови вчителя та в процесі виконання відповідних вправ. Навчальна ефективність таких вправ значно посилюється, якщо їх виконувати з опорою на записи термінів, що вивчаються, на дошці чи на окремих аркушах. Це забезпечує правильне співвіднесення термінів і відповідних математичних понять, дає змогу учням не тільки сприймати терміни на слух, а й самостійно читати їх. Наведемо зразки вправ.
¾ Прочитайте завдання і виконайте потрібні обчислення. Відповіді повідомляйте усно.
¾ Зменшити 32 на 7; 2; 9. Збільшити 8 на 8; 32; 69. На скільки 9 менше від 99; 81; 70? Знайти різницю чисел 85 і 7.
¾ Як дізнатися, на скільки одне число менше від іншого?
Нерідко здається, що добре прочитаний матеріал, наочне зображення його окремих елементів, короткий схематичний запис тексту забезпечують сприймання і усвідомлення учнями змісту математичного матеріалу. Це не завжди так. Справа в тому, що зміст матеріалу, форма його викладу — це тільки частина всіх тих подразників, що викликають в учнів певну реакцію. Усе те, що повідомляється в цьому, має чимало додаткової, зайвої для процесу засвоєння інформації. Засвоєння матеріалу нерідко супроводжується пригадуванням, роздумами і тривогами учнів. Усе це певним чином впливає на ефективність процесу засвоєння [58, 43].
Процес свідомого засвоєння навчального матеріалу складається з таких логічно пов'язаних між собою дій: виділення істотних ознак в заданих об'єктах математичного матеріалу, встановлення зв'язків і відношень між цими об'єктами, включення заданих об'єктів у нові зв'язки і відношення, аналіз учнями властивої діяльності.
При виконанні цих дій одні учні в процесі виконання усних обчислень потребують опори на наочність, іншим достатньо вербального матеріалу. Деякі учні відтворюють навчальний матеріал на основі широких словесних міркувань, інші відразу узагальнюють його. Особливістю способу дій одних учнів може бути те, що вони намагаються виконувати дії в думках, у внутрішньому плані, іншим учням при виконанні дій необхідно висловлювати свої думки вголос. Таким чином, у процесі засвоєння математичного матеріалу і при виконанні усних обчислень учні застосовують конкретно-образний, конкретно-символічний, абстрактно-символічний і абстрактно-образний способи дій.
Учні, які володіють конкретно-образним способом дій, потребують опори на числові формули. Їхня увага спрямована на виконання обчислювальних операцій з числами. Таке виконання дій відбувається у внутрішньому і зовнішньому планах і легко переходить з одного плану в інший. Пояснення способу виконання усних обчислень має глобальний, недиференційований характер [52, 20].
Учні, які володіють конкретно-символічним способом дій, спираються на уявлення, які відображають компоненти змісту задачі, виражені у вербальній формі. У процесі розв'язування задачі вони спрямовуються, в основному, на формулювання запитань, на виявлення ознак і властивостей, що мають бути істотними для шуканої величини. Процес виконання усних обчислень розгортається в зовнішньому плані у вигляді широких словесних міркувань. Якщо учні засвоюють навчальний матеріал абстрактно-символічним способом дій, то вони опираються на буквені вирази — символи і судження, подаючи їх у вигляді буквених формул. Учні, які володіють цим способом дій, швидко знаходять відповіді на запитання і обчислюють результати.
Учні, в яких абстрактно-образний спосіб дій, відчувають потребу в зорових образах, схемах. У них переважає спрямованість на визначення місця кожному образу в певній системі образів, яка створюється змістом задачі. Учні намагаються переформулювати зміст завдання. Процес розв'язування її у них розгортається у внутрішньому плані дій і майже не переходить у зовнішній.
Зауважимо, що успішність засвоєння знань, ставлення до навчальних труднощів пов'язані із сформованими цінностями особистості учня — успіхом чи неуспіхом, бажанням самоудосконалюватися, задоволенням певних потреб чи боротьбою, що пов'язана з їх гальмуванням.
Для засвоєння таблиць і формування обчислювальних навичок у шкільній практиці застосовуються математичні диктанти. У початкових класах математичні диктанти проводяться на різних етапах уроку. Вони є добрим засобом зворотного зв'язку між учителем і учнями. Виконуючи завдання диктантів, діти стають більш організованими, швидше зосереджуються. Проведення математичних диктантів на етапі усних обчислень сприяє не тільки розвитку навичок обчислення, а й підвищенню їх математичної культури, збагаченню математичної мови. Текст математичних диктантів учитель повинен записати у плані-конспекті уроку [63, 39].
У математичних диктантах учні часто записують не тільки відповіді, а й числові вирази. Проте на етапі усних обчислень вони здебільшого зазначають лише відповіді. Тому результати диктанту слід аналізувати відразу ж після його проведення. На виконання завдань відводиться 1-3 хв. Оскільки арифметичні операції за складністю різні, то диктант треба проаналізувати, щоб паузи були потрібної тривалості.
Взагалі бажано визначити провідну тему математичного диктанту (розв'язування задач певного виду; вправ, пов'язаних з математичною термінологією; вправ на застосування певного прийому обчислень та Ін.).
Подамо зразок математичного диктанту, пов'язаного з математичною термінологією.
1. Знайдіть різницю чисел 92 і 80.
2. Зменшуване 78, від'ємник 70. Знайдіть різницю чисел.
3. Вменшіть число 62 на 11.
4. Від числа 45 відніміть 25. Яке число отримали?
5. Сума двох чисел 84. Другий доданок 41. Знайдіть перший доданок.
6. У змаганнях взяло участь 48 хлопчиків, а дівчаток — на 28 менше, Скільки дівчаток взяло участь у змаганнях?
Чимало із завдань з виконання усних обчислень можна і треба підпорядковувати засвоєнню властивостей арифметичних дій, зв'язку між результатами і компонентами арифметичних дій, прийомів послідовного множення і ділення та округлення при додаванні і відніманні.
Для стимулювання діяльності, пов'язаної з засвоєнням прийомів виконання усних обчислень, особливе значення має намагання учнів усвідомити значимість задачі в категоріях здобутих знань, досвіду навчальної діяльності і особистих цінностей. Для цього потрібно, щоб внутрішні цінності школяра (потреба в успішному виконанні усних обчислень, бажання пізнавати нове тощо), необхідні для процесу розв'язування задач, постійно співвідносилися з провідними компонентами учіння — результатами, цілями, діями [32, 60].
Увага і установка — зовнішні вияви спрямованості школяра на засвоєння знань. У процесі оволодіння навчальним матеріалом діяльність школяра спрямована на досягнення поставлених цілей, на виконання дій. Така спрямованість є успішною тоді, коли результати, дії вчителя пов'язані з внутрішніми або особистісними детермінантами діяльності школяра.
На етапі проведення усних обчислень варто практикувати усні вправи геометричного змісту. Таку роботу бажано проводити хоча б раз на тиждень. Організовують її, як правило, за наперед підготовленими таблицями. Здебільшого геометричні вправи мають комплексний характер.
Завдання з логічним навантаженням, цікаві задачі, завдання підвищеної складності найчастіше практикують на етапі закріплення, але час від часу їх варто використовувати під час усних обчислень. У цьому разі бажано, щоб їх зміст був наближений до теми уроку.
Наведемо зразки різновидів задач, які доцільно пропонувати для усних обчислень.
1. Задачі-жарти (Брат з'їв 4 сливи, а сестра — 3. Скільки слив з'їла їхня бабуся?).
2. Задачі, при розв'язуванні яких треба враховувати обставину, не зазначену в тексті (У сім'ї троє синів. Кожен має сестру. Скільки всього дітей у сім'ї?).
3. Задачі на знаходження всіх можливих відповідей. (1. В ящику було З червоні і 3 зелені палички. Хлопчик узяв 4 палички. Якого кольору вони могли бути? Скільки паличок кожного кольору взяв хлопчик? 2. Назвіть всі двоцифрові числа, які можна утворити за допомогою цифр 2, 5, 9).
Таким чином, джерелами діяльності, спрямованої на оволодіння навичками виконання усних обчислень, можуть бути:
1. Внутрішні умови, що визначаються потребами школярів. Потреби мають природжений і набутий характер. До природжених відносять потребу в активності та інформації. Сформованими є потреби в знаннях, бажання приносити користь суспільству і досягати високого рівня виконання суспільно ціннісних завдань.
2. Зовнішні умови, що визначаються суспільними засобами життє-діяльності людини. Ці джерела активності називають спонуканнями [53, 42].
Методика проведення сучасного уроку передбачає додержання принципу тісного зв'язку навчання з життям. Уся навчально-виховна діяльність учителя при цьому спрямована на оптимізацію пізнавальної діяльності учнів. Під оптимізацією пізнавальної діяльності учнів розуміють таку організацію процесу засвоєння знань, в результаті якої учні в основному на уроці оволодівають знаннями, способами дій, соціально значимою ціннісною орієнтацією в навколишній дійсності, вчаться застосовувати здобуті знання на практиці. Усі зазначені аспекти діяльності учня на уроці мають перебувати у постійній взаємодії та взаємозв'язку, а це забезпечується комплексним підходом до створення навчальних ситуацій на уроці.
Комплексним підходом до розробки і створення навчальних ситуацій на уроці передбачається диференційована постановка навчальних завдань, керування процесом опанування учнями певного обсягу знань, організації їхньої самостійної мислительної діяльності. Звичайно, це не означає, що на кожному уроці мають виявлятись усі аспекти діяльності учнів. Ідеться про те, що коли на одному уроці навчальні ситуації спрямовувались на оволодіння певними знаннями, то на наступному уроці слід передбачати ситуації, які б стимулювали дослідницький пошук учнів чи сприяли організації їхньої самостійної мислительної діяльності [60, 49].
Виявом пізнавальної активності є бажання учнів ставити запитання, що виникають в процесі засвоєння навчального матеріалу. Учитель може спрямовувати запитання учнів на встановлення зв'язку між змістом навчального матеріалу і тією інформацією, яку вони здобувають з різних джерел (радіо, телебачення, додаткова література). Так, при вивченні усного додавання і віднімання багатоцифрових чисел учні можуть цікавитись відстанню від Землі до інших планет чи швидкістю космічного корабля. Після засвоєння теми «Площа» в учнів виникають запитання, пов'язані з їхнім досвідом, вони зацікавлюються тим, як обчислити площу різних навколишніх об'єктів [45, 53].
Отже, при створенні навчальних ситуацій на уроках не слід обмежуватися лише вимогами і завданнями підручника. Корисно пропонувати учням завдання і ставити вимоги, які б змушували їх проводити самостійні дослідження. Наприклад, щоб розкрити зв'язок між додаванням І відніманням, учням корисно запропонувати завдання (крім тих, що вміщені у підручнику) такого типу:
1. Скласти задачу, розв'язування якої розкривало б зв'язок віднімання з додаванням.
Зразок задачі: Скільки метрів тканини залишилося в куску завдовжки 30 м, якщо із 17 м цієї тканини пошили костюми?
Розв’язати її додаванням і відніманням.
30—17=13.
2. Дізнатися, чому число, від якого віднімали в першому прикладі, дорівнює числу, яке є результатом другого прикладу.
1) 33—17=16;
2) 16+17 = 33.
Подібні завдання можуть використовуватись на різних етапах уроку. Виконуючи їх, учні повинні усвідомити, що між діями додавання і віднімання закономірно існує зв'язок; результат дії додавання можна перевірити дією віднімання і навпаки.
У навчальних ситуаціях, що створюються на уроці, реалізується певна система взаємодій вчителя і учнів. Головна їх мета не лише засвоєння програмного навчального матеріалу, а й оволодіння уміннями застосовувати здобуті знання на практиці.
Оптимізацією діяльності учнів передбачається створення системи навчальних ситуацій, спрямованих на формування в учнів прийомів розумової діяльності. Учні під час виконання навчальних завдань вчаться спостерігати, запам'ятовувати, класифікувати й узагальнювати ознаки об'єктів [16, 23].
Навчальні ситуації уроку, які сприяють формуванню прийомів розумової діяльності, різні як за своїм змістом, так і за функціями. Джерела виникнення їх також неоднакові. Одні з них спеціально розробляються вчителем, інші — виникають стихійно. Деякі ситуації виникають у процесі діяльності вчителя, інші — зумовлюються діяльністю учнів. Одні ситуації, що виникають на уроці, сприяють засвоєнню учнями практичних дій, інші — викликають у них потребу виконувати розумові дії.
Спостережливість учнів розвивається різними прийомами організації сприймання: спрямуванням їх на розв'язування задач різного типу, на виконання підготовчих вправ, на практичне оперування навчальним матеріалом, на розв'язування задач з обов'язковим порівнянням їх змісту і плану розв'язування [38, 167].
Для організації сприймання навчального матеріалу учнями і формування в них спостережливості недостатньо використовувати на уроці різний за змістом і формою дидактичний матеріал. При розробці навчальних ситуацій уроку потрібно враховувати набутий життєвий досвід і знання учнів, спеціально спрямовувати їх на виділення основних властивостей об'єктів навчального матеріалу, зокрема тих, що потрібні їм для засвоєння наступних знань і що можуть застосовуватись у практичній діяльності. Важливою вимогою в організації спостережливості учнів є постановка конкретного завдання. Наприклад: навчитися на уроці розрізняти прийоми усного обчислення дій додавання і множення, дізнатися, якими способами можна швидше обчислювати, множення числа на суму.
Створити навчальні ситуації, що сприяють формуванню спостереж-ливості учнів, можна за допомогою завдань типу:
1. У дворі гралося 7 дівчаток. З будинку вийшла ще одна дівчинка — Оленка. Якою вона буде по рахунку?
2. У дворі гралося 7 дівчаток. З будинку вийшла ще одна дівчинка. Скільки дівчаток стало гратися у дворі?
3. У дворі гралося 7 дівчаток. У будинок зайшла одна дівчинка. Скільки дівчаток залишилось гратися в дворі?
Чим відрізняються задачі одна від одної?
Для формування уважності в учнів використовуються такі можливості уроку, як розповідь вчителя щодо раціонального способу виконання завдань, користування паузами, різні форми подачі навчального матеріалу, контрастність у створенні навчальних ситуацій та в організації діяльності учнів. Важливо, щоб перед кожним етапом пояснення матеріалу і після нього вчитель робив невеликі паузи. Потрібні паузи і перед розкриттям змісту навчального матеріалу, визначенням основних ознак об'єкта, що вивчається. Паузи роблять для того, щоб учні змогли зосередитись, переключитись з одного виду завдань на інший, змінити установку.
Обов'язковою вимогою до організації уваги учнів є використання вчителем елементів новизни в формі подачі знань, в їх змісті, у звичній для учнів діяльності на уроці. Важливим є додержання контрастності у зовнішніх впливах [53, 43].
Розглянемо ситуацію, яка створюється на уроці для формування спостережливості, уважності і довільного запам'ятовування школярів.
Під час ознайомлення з прийомами усного множення і ділення на 5 учням пропонується набір чисел
240 70 370
460 90 560
720 120 790
і такі запитання та завдання:
На яке число швидко можна поділити ці числа? (Відповідь: на 10.)
Чи можна швидко поділити ці числа на 5? (Швидко не можна поділити.)
Для цього треба порівняти числа І0 і 5. Що про них можна сказати? (Число 5 менше від 10 в два рази.)
Коли дільник зменшити в 2 рази, то що станеться з часткою? (Частка зменшиться вдвічі).
Перевірте, чи правильна буде частка. (240 : 10 = =24,240:5=48.)
Як 240 можна легко поділити на 5? (240: 10-2 = 48.)
Яке правило можна сформулювати про ділення числа на 5?
(Щоб поділити число на 5, треба поділити його на 10 і результат помножити на 2.)
Розвитку мислення учнів на уроці сприяють навчальні ситуації, в яких учні опиняються перед необхідністю досліджувати об'єкт, розкривати певні закономірності, встановлювати раціональний спосіб розв'язування задачі, складати систему задач тощо. Для таких ситуацій доцільно використовувати текстові задачі, в яких дані величини зображуються різного роду символікою (буквами, цифрами, фігурами), реальними предметами; задачі в прямій і непрямій формі, із зайвими і недостатніми даними [50, 74].
Ситуації, в яких учні переформульовують завдання, сприяють виробленню в них уміння оцінювати власну діяльність. Наприклад, у завданні потрібно дізнатись, на скільки число 33 більше від 19. Учням повинні замінити цю вимогу аналогічною їй:
Яке число треба додати до 19, щоб дістати 33? Чому дорівнює різниця чисел 33 і 19?
Нехай, наприклад, дано задачу:
У селі 210 цегляних будинків, а дерев'яних на 70 менше. Скільки будинків у селі?
Учні формулюють її по-іншому:
Різниця між кількістю цегляних і дерев'яних будинків у селі дорівнює 70. Цегляних будинків 210. Скільки будинків дерев'яних?
Учні, переформульовуючи в думці умови і вимоги завдань, поглиблено аналізують їх зміст.
Наприклад, розглядаючи запис 26—15, вони роблять такі висновки:
Цей математичний вираз є різницею чисел 26 і 15; такий запис означає, що потрібно знайти значення виразу. Воно дорівнює числу 11. Число 11 є різницею чисел 26 і 15. Воно означає, що 26>15 на 11, або що 15<25 на її. Числа 15 і 11 в сумі дають 26. Число 26 — зменшуване, а число 15 — від'ємник.
Засобом спрямування мислительної діяльності учнів на пошук істотних ознак способу виконання завдання є певним чином сформульовані запитання вчителя до учнів після виконання ними запропонованого завдання.
Наприклад, учням пропонується виконати завдання такого типу:
Сума трьох доданків дорівнює 100. Перший доданок 40, третій 35. Чому дорівнює другий доданок?
Учні аналізують зміст завдання. Основним предметом їхнього аналізу є зв'язок між першим і третім доданками та сумою трьох доданків. Щоб розкрити зв'язок між зазначеними об'єктами, потрібно було поставити і виконати завдання, яке не пропонувалося в умові завдання і не було його вимогою. Справді, у завданні ставилася вимога знайти другий доданок і не наголошувалось, що для цього достатньо знайти суму першого і третього доданків. Потреба у виконанні цієї дії виникла в результаті характеристики змісту. Інакше кажучи, нове, що випливає з даного завдання, є результатом проведеного учнями аналізу змісту завдання через синтез. Таким чином, постановка і виконання вихідного завдання має важливе значення в пошуках способу виконання завдання. Щоб учні переконалися в правильності знайденого ними способу виконання завдання, учитель, після того як вони виконають завдання, запитує в них про те, що насамперед привернуло їхню увагу в завданні, про що треба було дізнатися, щоб виконати завдання,, як перевірялась правильність поставлених ними завдань.