There are three rules on determining how many significant figures are in a number:
Focus on these rules and learn them well. They will be used extensively throughout the remainder of this course. You would be well advised to do as many problems as needed to nail the concept of significant figures down tight and then do some more, just to be sure.
Please remember that, in science, all numbers are based upon measurements (except for a very few that are defined). Since all measurements are uncertain, we must only use those numbers that are meaningful. A common ruler cannot measure something to be 22.4072643 cm long. Not all of the digits have meaning (significance) and, therefore, should not be written down. In science, only the numbers that have significance (derived from measurement) are written.
Rule 1: Non-zero digits are always significant.
Hopefully, this rule seems rather obvious. If you measure something and the device you use (ruler, thermometer, triple-beam balance, etc.) returns a number to you, then you have made a measurement decision and that ACT of measuring gives significance to that particular numeral (or digit) in the overall value you obtain.
Hence a number like 26.38 would have four significant figures and 7.94 would have three. The problem comes with numbers like 0.00980 or 28.09.
Rule 2: Any zeros between two significant digits are significant.
Suppose you had a number like 406. By the first rule, the 4 and the 6 are significant. However, to make a measurement decision on the 4 (in the hundred's place) and the 6 (in the unit's place), you HAD to have made a decision on the ten's place. The measurement scale for this number would have hundreds and tens marked with an estimation made in the unit's place. Like this:
These are sometimes called "captured zeros."
Rule 3: A final zero or trailing zeros past the deciamal are significant.
This rule causes the most difficulty with students. Here are two examples of this rule with the zeros this rule affects in boldface:
0.00500
0.03040
Here are two more examples where the significant zeros are in boldface:
2.30 x 10¯5
4.500 x 1012
Exact numbers, such as the number of people in a room, have an infinite number of significant figures. Exact numbers are counting up how many of something are present, they are not measurements made with instruments. Another example of this are defined numbers, such as 1 foot = 12 inches. There are exactly 12 inches in one foot. Therefore, if a number is exact, it DOES NOT affect the accuracy of a calculation nor the precision of the expression. Some more examples:
There are 100 years in a century.
2 molecules of hydrogen react with 1 molecule of oxygen to form 2 molecules of water.
There are 500 sheets of paper in one ream.
Interestingly, the speed of light is now a defined quantity. By definition, the value is 299,792,458 meters per second.
Identify the number of significant figures:
1) 3.0800
2) 0.00418
3) 7.09 x 10¯5
4) 91,600
5) 0.003005
6) 3.200 x 109
7) 250
8) 780,000,000
9) 0.0101
10) 0.00800
1) 3.0800 - five significant figures. All the rules are illustrated by this problem. Rule one - the 3 and the 8. Rule Two - the zero between the 3 and 8. Rule three - the two trailing zeros after the 8.
2) 0.00418 - three significant figures: the 4, the 1, and the 8. This is a typical type of problem where the student errs by giving five significant figures as the answer.
3) 7.09 x 10¯5 - three significant figures. When a number is written in scientific notation, only significant figures are placed into the numerical portion. If this number were taken out of scientific notation, it would be 0.0000709.
4) 91,600 - three significant figures. The last two zeros are not considered to be significant (at least normally). Suppose you had information that showed the zero in the tens place to be significant. How would you show it to be different from the zero in the ones place, which is not significant? The answer is scientific notation. Here is how it would be written: 9.160 x 104. This CLEARLY indicates the presence of four significant figures.
5) 0.003005- four significant figures. No matter how many zeros there are between two significant figures, all the zeros are to be considered significant. A number like 70.000001 would have 8 significant figures.
6) 3.200 x 109 - four significant figures. Notice the use of scientific notation to indicate that there are two zeros which should be significant. If this number were to be written without scientific notation (3,200,000,000) the significance of those two zeros would be lost and you would - wrongly - say that there were only two significant figures.
7) 2
8) 2
9) 3
10) 3