2009Winter
Winter '09 Schedule
AMS 206-01 (41107) MoWeFr 11:00AM - 12:10PM Cowell Clrm 131
AMS 212A-01 (43809) TuTh 12:00PM - 1:45PM Porter Acad 241
AMS 216-01 (43810) TuTh 6:00PM - 7:45PM J Baskin Engr 169
AMS 214-01 (43808) TuTh 8:00AM - 9:45AM J Baskin Engr 165 ???
Seminars
AMS 280A-01 (43348) Th 4:00PM - 5:45PM J Baskin Engr 330 M. Mangel 2.00
AMS 280B-01 (41721) Mo 4:00PM - 6:00PM Engineer 2 180 A. Rodriguez 2.00 ???
http://ics.org.ru/rus?menu=mi_publish&publish=all
http://ics.org.ru/rus?menu=mi_pubs&subj=all
http://www.mathnet.ru/
http://www.soe.ucsc.edu/classes/ams212a/Winter09/
http://www.ams.ucsc.edu/~pgaraud/Lectures.html
http://www-sbras.nsc.ru/rus/textbooks/akhmerov/ode_unicode/index.html Ахмеров ODE
http://ocw.mit.edu/OcwWeb/Mathematics/18-306Spring2004/LectureNotes/index.htm MIT
http://ocw.mit.edu/OcwWeb/Mathematics/18-305Fall-2004/LectureNotes/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-303Fall-2006/LectureNotes/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-152Fall-2004/LectureNotes/index.htm
http://ocw.mit.edu/OcwWeb/Mathematics/18-152Fall-2005/LectureNotes/index.htm
http://www.soe.ucsc.edu/classes/ams206/Winter09/
http://en.wikipedia.org/wiki/Checking_if_a_coin_is_fair
http://www.maths.bath.ac.uk/~masss/ma40189.html
http://www.markirwin.net/stat220/lecture.html
http://web.thu.edu.tw/wenwei/www/bayesmarginpdf.htm
http://www.stat.uiowa.edu/~kcowles/s138_2007/node2.html
http://www.stat.uiowa.edu/~kcowles/s138_2008/node2.html
Metropolis-Hastings
http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/metrop/
http://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
http://xbeta.org/wiki/show/Metropolis-Hastings+algorithm
http://www.soe.ucsc.edu/classes/ams216/Winter09/ Local lecture Notes
http://www.soe.ucsc.edu/~hongwang/AMS216/
http://www.ifp.uiuc.edu/~hajek/Papers/randomprocesses.html
MIT opencources
http://cnx.org/content/m10235/latest/
http://ocw.mit.edu/OcwWeb/Mathematics/18-366Fall-2006/LectureNotes/index.htm
http://ocw.mit.edu/OcwWeb/Sloan-School-of-Management/15-070Fall-2005/CourseHome/
http://ocw.mit.edu/OcwWeb/Sloan-School-of-Management/15-098Spring-2006/CourseHome/
http://en.wikipedia.org/wiki/Stochastic_process
http://www.soe.ucsc.edu/classes/ams214/Winter09/
Local files: 1D chaos
http://en.wikipedia.org/wiki/Hyperbolic_fixed_point
http://www.egwald.ca/nonlineardynamics/index.php
http://www.scholarpedia.org/article/Limit_cycle
http://www.egwald.ca/nonlineardynamics/limitcycles.php
http://www.maths.qmw.ac.uk/~klages/teaching/mas424/
http://www.ams.ucsc.edu/~pgaraud/Lectures.html
Local Files ivanovDoublePendulum
YouTube: Steven Strogatz:
http://www.youtube.com/results?search_query=Steven+Strogatz&search_type=
Kuznetsov http://sgtnd.narod.ru/publ/rus/main.htm
Fixed point
saddle (hyperbolic) fixed point: eugenvalues have different signs
Conservative system cannot have any attracting fixed points, only saddles and centers.
Reversible Systems
x' = f(x, y) odd regarding y->-y
y' = g(x, y) even regarding y->-y
t->-t if x. = 0 is a linear center for a reversible system,
then all trajectories are closed curves near the origin
Bifurcations: phase portrait changes its topological structure as parameter varies
saddle-node bifurcation normal form: a (+-) x^2 creation and destruction of fixed points
transcritical bifurcation normal form: ax (+-) x^2
pitchfork bifurcation: ax (+-) x^3
pitchfork supercritical
pitchfork subcritical.
Supercritical Hopf bifurcation occurs when stable spiral changesinto unstable spiral surrounded by small limit cycle.
No closed orbits criteria:
1) Gradient systems cannot have periodic orbits
2) Dulac criterion: Let x' = f (x) defined on a simply connected subset R.
If there exists function g(x) such that div (gx') has same sign in R, then no closed orbits lying entirely in R.
I No algorithm for finding g(x). Try g = 1, 1/(x^a)*(y^b), exp(ax), exp(ay)
YES closed-orbits criteria: Poincare-Bendixson Theorem
If R contains no fixed points and exists a trajectory of X starting in R which stays in R for all future times. Then, either is a closed orbit or asymptotically approaches a closed orbit; in other words,
there exists a limit cycle in R
http://www.soe.ucsc.edu/classes/ams020/Winter09/
http://www.ams.ucsc.edu/courses/course?ams020a/
Instructor: Qi Gong qigong@soe.ucsc.edu office: BE 143
TA: Chan dchan@soe.ucsc.edu