2009Spring
MATLAB http://radiomaster.ru/cad/matlab/
http://www.soe.ucsc.edu/~hongwang/AMS212B
http://en.wikipedia.org/wiki/Perturbation_theory
http://en.wikipedia.org/wiki/Category:Asymptotic_analysis
http://www.scholarpedia.org/article/Singular_perturbation_theory
http://en.wikipedia.org/wiki/Method_of_matched_asymptotic_expansions
http://www.ams.ucsc.edu/courses/course?ams212b
http://math.fizteh.ru/study/methods/tk.esp Russian Lectures
http://ocw.mit.edu/OcwWeb/Mathematics/18-306Spring2004/LectureNotes/index.htm
E-books: http://avaxhome.ws/ebooks/science_books/math/0471630594.html
: http://eqworld.ipmnet.ru/ru/library/mathematics/ode.htm
http://lib.org.by/_djvu/M_Mathematics/MC_Calculus/MCap_Asymptotics,%20perturbations
http://avaxhome.ws/ebooks/0471523682_element_stochastic_processes.html
http://www.soe.ucsc.edu/classes/ams213/Spring09
http://www.math.umn.edu/~olver/
http://www.stanford.edu/class/cme306/
http://www.amsta.leeds.ac.uk/~mark/MATH3473/
http://www-math.mit.edu/~persson/18.335
http://math.fullerton.edu/mathews/numerical.html
http://www.ams.sunysb.edu/~jiao/teaching/ams526_fall08
http://www.cs.usask.ca/~spiteri/
http://www.fizyka.umk.pl/nrbook/bookcpdf.html Numerical recipes in C
http://www.nrbook.com/a/bookcpdf.php Numerical recipes in C
http://www-users.cs.umn.edu/~saad/books.html Another book
http://en.wikipedia.org/wiki/List_of_numerical_analysis_topics
http://www.mathworks.com/moler/chapters.html Numerical Methods Book
http://www.uchites.ru/chislennye_metody/posobie Russian book
http://algolist.manual.ru/maths/linalg/index.php Another russian book
http://www.allmath.ru/numemeth.htm russian books
http://matlab.exponenta.ru/spline/index.php Matlab ru
http://alglib.sources.ru/matrixops/general/qr.php QR factorization rus
http://www.alkires.com/ee103.html
http://people.sc.fsu.edu/~burkardt/math2071/lab_10.html#HOUSEHOLDER_MATRICES
An n × n matrix M is said to be positive definite if for all nonzero vectors v, the product vTMv > 0.
Looking at this product, we see that it is the dot product of vT and Mv. The dot product of two vectors is vTMv = ||v||2 ||Mv||2 cos(θ), where θ is the angle between v and Mv, and and thus, for the dot product to be positive, it means that the image of v must have an angle θ less than 90o, i.e., |θ| < π/2.
http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Matrix_norm
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Frobenius_inner_product#Frobenius_inner_product
Gonjugate gradient methods
http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method
http://www.netlib.org/linalg/html_templates/node9.html
Russian:
http://www.basegroup.ru/library/analysis/neural/conjugate
http://www.ctc.msiu.ru/program/t-system/ready_tasks/cg/cg_doc/node4.html
http://www.intuit.ru/department/calculate/paralltp/8/4.html
http://iasa.org.ua/tpr.php?lang=rus&ch=3&sub=4
http://www.soe.ucsc.edu/classes/ams010/Spring09
http://academicearth.org/courses/linear-algebra http://web.mit.edu/18.06/www/
http://ocw.mit.edu/OcwWeb/Mathematics/18-06Spring-2005/CourseHome/
http://www.free-ed.net/free-ed/Math/LinearAlgebra/LinearAlg01.asp
http://online.redwoods.cc.ca.us/instruct/darnold/linalg/
72281 AMS-10-01 Math Methods I TTh 10:00A-11:45A Kresge Clrm 327 Brummell
77203 AMS-10A-01 Basic Math Methods I TTh 10:00A-11:45A Kresge Clrm 327 Brummell
Sections in Baskin Engr 109
77199 AMS-10-01A M 09:00A-11:00A
77200 AMS-10-01B W 02:00P-04:00P
77201 AMS-10-01C F 12:00P-02:00P