MATTE VECKA 41-42
Kapitel 1.11 Räknesättens ordningsföljd (sidorna 60-65)
Räknesättens ordningsföljd:
Parenteser
Potenser
Multiplikation och division
Addition och subtraktion
Ordningsföljden kan ändras med parenteser
____________________________________________________________
Uttryck med parenteser
Med parenteser kan man ändra ordningsföljden mellan räknesätten
Uträkningen börjar med de innersta parenteserna
Räkneuppgifter: sidorna 63-64
Hemuppgifter: sidan 65
Youtube:
MATTE VECKA 40
Kapitel 1.10 Potens (sidorna 54-59)
En multiplikation där alla faktorer är lika kallas potens
I potensbeteckningen visar exponenten hur många gånger basen förekommer i multiplikationen
Ett tal upphöjt till 2 kallas kvadraten eller talet i kvadrat
Ett tal upphöjt till 3 kallas kuben eller talet i kub
_______________________________________________________________________
Negativ bas
Då basen i en potens är negativ skrivs basen inom parentes
Om exponenten är jämn, är värdet av potensen positiv
Om exponenten är udda, är värdet av potensen negativ
Potenser och exponent
Räkneuppgifter: sidorna 57-58
Hemuppgifter: sidan 59
Youtube:
MATTE VECKA 39
Kapitel 1.9 Produkt och kvot (sidorna 48-53)
Vid multiplikation kallas resultatet produkt
Multiplikation = addition där alla termer är lika ( 4+4+4+4+4 = 5 • 4 = 20 )
Man kan ändra ordningsföljden: 2 • 3 = 3 • 2 = 6
Teckenregler för produkten (multiplikation)
+ • (+) = +
- • (-) = + (produkten är positiv om det finns jämnt antal negativa faktorer)
+ • (-) = - (produkten är negativ om det finns ett udda antal negativa faktorer)
- • (+) = -
____________________________________________________________________
Division: 15 : 3 = 5 (täljare : nämnare = kvot)
Kvoten anger hur många gånger nämnaren går i täljaren ( 10 : 2 = 5)
Man kan inte dividera ett tal med 0 ( 7 : 0 kan inte räknas)
Teckenregler för kvoten (division)
+ : (+) = +
- : (-) = + ( kvoten är positiv då täljare och nämnare har samma tecken )
+ : (-) = - ( kvoten är negativ då täljare och nämnare har olika tecken )
- ; (+) = -
Räkneuppgifter: sidorna 51-52
Hemuppgifter: sidan 53
Youtube:
MATTE VECKA 38
Kapitel 1.8 Förenkling av uttryck (sidorna 42-47)
Ett uttryck bildas av tal och tecken för räkneoperationerna
Uttryckets värde är resultatet av ett uttryck
Innan man adderar eller subtraherar lönar det sig att förenkla enligt reglerna
+ ( + ) ==> + Ex. 5 + (+4) = 5 + 4 = 9
+ ( - ) ==> - Ex. 10 + (-3) = 10 - 3 = 7
- ( + ) ==> - Ex. -8 - (+5) = -8 - 5 = -13
- ( - ) ==> + Ex. -3 - (-4) = -3 + 4 = 1
__________________________________________
Förenklingsmetoder
Avskaffa parenteserna
Skriv talen med sina tecken efter varandra
Man kan ändra talens ordningsföljd utan att uttryckets värde förändras
Avståndet mellan två tal på tallinjen
Subtrahera det större talet med det mindre:
Skillnaden mellan 20 och 15 är 20 - 15 = 5
Skillnaden mellan 14 och -10 är 14 - (-10) = 14 + 10 = 24
Skillnaden mellan -11 och -18 är 18 - 11 = 7
Räkneuppgifter: sidorna 44-46
Hemuppgifter: sidan 47
Youtube:
MATTE VECKA 37
Kapitel 1.7 Summa och differens (sidorna 36-41)
Addition
Då du adderar tal kallas resultatet summa
9 + 5 = 14 (siffror 9 och 5 är termer och 14 är summan)
Summan av motsatta tal är 0 ( -5 + 5 = 0 )
Subtraktion
Då du subtraherar kallas resultatet differens
15 - 9 = 6 ( siffrorna 15 och 9 är termer och 6 är differensen )
Addition och subtraktion på tallinjen
Då du adderar ett tal med ett positivt tal rör du dej till höger på tallinjen
Då du subtraherar ett tal med ett positivt tal rör du dej till vänster på tallinjen
Räkneuppgifter: sidorna 39-40
Hemuppgifter: sidan 41
Youtube:
MATTE VECKA 35-36
Kapitel 1.4 Heltal (sidorna 22-27)
Positiva tal = tal som är större än noll
Negativa tal = tal som är mindre än noll (föregås av ett minustecken)
Hela tal är alltså: ..... , -3, -2, -1, 0, 1, 2, 3, .....
Heltalen kan åskådliggöras på en tallinje
Negativa tal finns till vänster om noll
Positiva tal finns till höger om noll
Skillnader i storlek mellan tal kan åskådliggöras på tallinje
Ett tal som finns längre till vänster är negativare
Ett tal som finns längre till höger är positivare
Jämförelse av tal: = (lika med) < (mindre än) > (större än)
Räkneuppgifter: sidorna 25-26
Hemuppgifter: sidan 27
Youtube:
MATTE VECKA 33-34
Kapitel 1.1 Talens uppbyggnad (sidorna 6-11)
Arabiska siffror (0, 1, 2, 3, 4, 5, 6, 7, 8 och 9)
Naturliga tal (0, 1, 2. 3, .......)
Positionssystemet:
ental, tiotal, hundratal, tusental, tiotusental, hundratusental, miljontal
1 432 079 = 1 000 000 + 400 000 + 30 000 + 2 000 + 70 + 9
en miljon fyrahundratrettiotvå tusen sjuttionio
Räkneuppgifter: sidorna 9-10
Hemuppgifter: sidan 11
Extra övningar: Romerska siffror + tillhörande räkneuppgifter (gula avsnittena)
Youtube: