Publications

Peer-Reviewed Journals


2021

Petilli, M. A., Günther, F., Vergallito, A., Ciapparelli, M., & Marelli, M. (2021). Data-driven computational

models reveal perceptual simulation in word processing. Journal of Memory and Language, 117, 104194.

Link Download


Capuano, F., Dudschig, C., Günther, F., & Kaup, B. (2021). Semantic Similarity of Alternatives fostered

by Conversational Negation. Cognitive Science, 45, e13015. Link


2020

Günther, F., Petilli, M. A., Vergallito, A. & Marelli, M. (2020). Images of the unseen: Extrapolating visual

representations for abstract and concrete words in a data-driven computational model. Psychological

Research, Advance online publication. Link Download


Amenta, S.*, Günther, F.*, & Marelli, M.* (2020). A (distributional) semantic perspective on the

processing of morphologically complex words. The Mental Lexicon, 15, 62-78. Link/Download


Günther, F., Nguyen, T., Chen, L., Dudschig, C., Kaup, B., & Glenberg, A. M. (2020). Immediate

sensorimotor grounding of novel concepts learned from language alone. Journal of Memory and

Language, 115, 104172. Link Download


Günther, F., Petilli, M. A., & Marelli, M. (2020). Semantic transparency is not invisibility: A

computational model of perceptually-grounded conceptual combination in word processing.

Journal of Memory and Language, 112, 104104. Link Download


Günther, F., Marelli, M., & Bölte, J. (2020). Semantic transparency effects in German compounds: A large

dataset and multiple-task investigation. Behavior Research Methods, 52, 1208-1224.

Link/Download


Günther, F., & Marelli, M. (2020). Trying to make it work: Compositional effects in the processing of

compound "nonwords". Quarterly Journal of Experimental Psychology, 73, 1082-1091.

Link Download


2019

Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-space models of semantic representation from a

cognitive perspective: A discussion of common misconceptions. Perspectives on Psychological Science, 14,

1006-1033. Link Download


Günther, F., Smolka, E., & Marelli, M. (2019). 'Understanding' differs between English and German:

Capturing Systematic Language Differences of Complex Words. Cortex, 116, 168-175.

Link Download


Günther, F., & Marelli, M. (2019). Enter sand-man: Compound processing and semantic transparency in a

compositional perspective. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45,

1872–1882. Link Download


Forthmann, B., Oyebade, O., Ojo, A., Günther, F., & Holling, H. (2019). Application of latent

semantic analysis to divergent thinking is biased by elaboration. Journal of Creative Behavior, 53, 559-575.

Link


2018

Günther, F., Dudschig, C., & Kaup, B. (2018). Symbol grounding without direct experience: Do words inherit

sensorimotor activation from purely linguistic context? Cognitive Science, 42, 336-374.

Link Download

2016

Günther, F., & Marelli, M. (2016). Understanding Karma Police: The Perceived Plausibility of Noun

Compounds as Predicted by Distributional Models of Semantic Representation. PLoS ONE, 11 (10),

art.nr. e0163200. Link/Download


Günther, F., Dudschig, C., & Kaup, B. (2016). Predicting lexical priming effects from distributional semantic

similarities: A replication with extension. Frontiers in Psychology, 7, art.nr. 1646. Link/Download


Günther, F., Dudschig, C., & Kaup, B. (2016). Latent Semantic Analysis cosines as a cognitive similarity

measure: Evidence from priming studies. Quarterly Journal of Experimental Psychology, 69, 626-653.

Link Download


2015

Günther, F., Dudschig, C., & Kaup, B. (2015). LSAfun – An R package for computations based on Latent

Semantic Analysis. Behavior Research Methods, 47, 930-944. Link Download


Peer-Reviewed Conference Proceedings

2018

Günther, F., & Marelli, M. (2018). The language-invariant aspect of compounding: Predicting compound

meanings across languages. In E. Cabrio, A. Mazzei, & F. Tamburini (Eds.), Proceedings of the Fifth Italian

Conference on Computational Linguistics (pp. 230-234). Turin, Italy: Accademia University Press.

Link Download