Accelerators
A CONVERSATION WITH ANTOINE WOJDYLA
Antoine Wojdyla grew up in the Caribbean, on the French islands of Guadeloupe and Saint-Martin. He has no scientists in his family as role models, but his interest in the wonders of science were set in motion from his grandfather who was a woodworker. His grandfather built him a toy cart and he added a bulb, battery, and wires. Antoine was amazed at what happened when touching the wires turned the light on and deemed his grandfather a magician. He was informed that it was not magic, but science, that could be learned. He was encouraged to be curious not only by family members, but from teachers and professors.
He moved to mainland France and received his Ph.D. from Ecole Polytechnique, a school near Paris, where he studied terahertz radiation, a kind of electromagnetic wave that sits between infrared and microwaves.
He was interested in terahertz radiation since it can see through materials while producing acceptable resolutions for imaging. This technology is used in body scanners in airports and 5G telecommunications. While this work is not related to his current work at the Lab, his early experience and ideas are transferable to his current work.
One of Antoine’s favorite quotes comes from his colleague and mentor Ken Goldberg. “There are only two kinds of people who really enjoy doing their jobs, baseball players and physicists.” Antoine says he doesn’t know much about baseball, but physics sure is a great occupation.
When did you come to the Lab?
I came to the lab about nine years ago, where I started as a postdoc at the Center for X-Ray Optics, studying extreme ultraviolet (EUV) lithography, which is the latest technology in semiconductor manufacturing. iPhone 12 chips are made using this technology, and the Lab and the ALS have been at the forefront of research in this area. For a while I thought I would bring my scientific expertise to industry, but I realized that the environment at Berkeley Lab was quite unique and would allow me to conduct research better than anywhere else. Plus, we undoubtedly have the best view from our offices, and a community which truly believes in improving the fabric of academia.
Around the same time in 2016, the Advanced Light Source was starting the conceptual design for an upgrade, and I was asked if I wanted to join. It wasn’t a very hard decision to make.
What are you currently working on?
I am currently working on the upgrade of the Advanced Light Source (ALS-U), which is a large-scale DOE project. The goal is to turn the facility from a very fancy flashlight to a laser-like source of x-rays, the so-called “4th generation” of synchrotrons (diffraction-limited storage rings) where we eventually reach the limits of what is permitted by physics.
The project is roughly divided between the accelerator systems and the beamline and optical systems, which I’m part of. My role is to design the new beamlines that will operate on day one after the upgrade, taking advantage of the unique properties of the source. We work with beamline scientist to understand what they want to be able to conduct experiments with what will be the most coherent synchrotron radiation in the world, and together with engineers we define tolerances to provide them what they need based on the state of the art of mechanical and optical engineering: everything has to be very precise – aberration measured in pico-feet and not allowed to move by more than a nano-inch.)
It’s also great to work with colleagues from the accelerator side, learn how they handle electrons and see how we can adapt these techniques to measure our bright photons. We develop new enabling technologies such as x-ray wavefront sensing and adaptive optics, and sometimes borrow ideas, such as using machine learning to compensate for minute deformations caused by every residual drift and non-linearities.
I’m also learning a lot from colleagues from other U.S. light source facilities: there is a great spirit of collaboration at the national level.
What big challenge(s) are you hoping to solve with your work in the next 20 years?
Lately, I’ve been very excited by newly found links between superconductors and knots in the magnetic field called skyrmions and other strange topological effects. Soft x-ray light sources are ideal to look at these topics, and if we can understand how this all works, maybe we could manufacture superconductors working at room temperature.
If we can harness superconductivity, not only could you move energy from sunny to darker places, but you could also have flying cars. The internet brought a nearly frictionless flow of information and changed the world. Imagine what would happen if it was the same for green energy.
I think with laser-like properties of the upgraded ALS, there are many challenges we could tackle beyond better resolution and faster experiments. Things like adaptive optics, which means you literally change the surface of mirrors by a few atoms, could be possible. You could potentially use the light as a tweezer, create phase vortices to twist crystal lattices or, or 3D-print at the nanoscale.
Who from the past, present, or future would you like to collaborate with? And on what?
I want to collaborate with scientists from today! There is such an amazing pool of young scientists, and their make up is more diverse now than ever before. If we can harness the expected boost in science funding, we could change the face of academia. The current global health situation has been difficult for many, but particularly so for young scientists, and I sincerely hope we can make up for the crucial interactions that didn’t happen over the last 20 months.
Events such as the Lab Slam or area-wide seminars are ideal to start such conversation, and I think dissemination of knowledge through communication is very good overall. Thanks to that, I feel that there’s a great soil for collaboration among scientists from various fields, and many times I went on hike with colleagues working in biology or chemistry telling me about their research, and the next month see this kind of research featured in leading journals – understanding why it was relevant, but more importantly how I could help. With the end of Moore’s law, we have also become able to manipulate matter in exquisite ways, and I am very interested in learning more about the latest trends in material sciences.
On a different note, the current climate of information around global warming or public health measures worries me, and it’s inspiring to see scientists from the Lab taking a public role disseminating science ideas. That’s somewhere we can all learn from our colleagues.