Nanomaterials to Wearables:
Engineering the Future of Sensing
MXene Nanosheet-Based Technologies
本實驗室致力於開發 MXene 前瞻奈米材料,結合綠色基材(如宣紙、竹纖維) 、3D 生物列印 與仿生微針技術 ,打造具備高導電性、生物相容性且透氣的多功能感測電極 。這些感測器能精準偵測肌肉收縮(EMG) 、眼動電訊號(EOG) 、以及透過深度學習輔助的吞嚥功能監測 ,並廣泛應用於外骨骼精準控制 、臨床吞嚥障礙復健 與智慧抗菌傷口修復 等次世代穿戴式醫療與綠色電子系統。
Our group centers on the development of MXene-based technologies to advance the fields of sustainable electronics and intelligent healthcare.
MXenes are a versatile family of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides1. Their general formula is expressed as M(n+1)XnTx, where "M" represents a transition metal, "X" is carbon or nitrogen, and Tx denotes various surface functional groups. Often described as "conductive clays," MXenes uniquely combine metallic-grade electrical conductivity with a hydrophilic surface chemistry, high mechanical robustness, and excellent biocompatibility. These characteristics make them ideal building blocks for flexible, printed, and wearable soft electronics.
Our research bridges material science and clinical application through the following pillars:
To mitigate the environmental impact of electronic waste, we integrate conductive MXene nanosheets with biodegradable, renewable substrates
Eco-Friendly Substrates: We utilize bamboo-derived cellulose nanofibers and traditional Xuan paper to create fully degradable, high-performance paper electrodes
High-Fidelity Sensing: These electrodes maintain low and stable interfacial impedance, providing superior signal-to-noise ratios for monitoring bioelectrical signals such as surface electromyography (sEMG).
Human-Machine Interfaces (HMI): Our MXene-paper sensors have successfully enabled real-time, low-latency exoskeleton control, assisting in physical rehabilitation and gait support.
We develop advanced electrode architectures combined with machine learning to enhance the precision of medical monitoring.
Bio-Inspired Design: Taking inspiration from nature, we have designed paraboloidal dome-shaped dry electrodes—modeled after octopus suction cups—to significantly increase skin contact area and improve signal acquisition.
Postoperative Monitoring: These systems are deployed to monitor swallowing functions in patients recovering from neck cancer or suffering from dysphagia.
Deep Learning Integration: By applying Convolutional Neural Networks (CNN) to multi-channel sEMG data, our systems provide quantitative, AI-assisted assessments of patient recovery with high diagnostic accuracy.
Our lab pioneers the use of MXenes in specialized wearable devices for monitoring and therapy.
Integrated Microneedles: We develop MXene-coated microneedle arrays for painless transdermal biosensing and closed-loop electrostimulation of neuromuscular disorders.
Miura-ori Structures: Using 3D printing, we create air-permeable electrodes based on the Miura-ori structure, ensuring long-term wearability and effective heat dissipation during continuous health monitoring.
Sensors based on microelectrodes
本實驗室致力於開發各種導電材料,作為感測電極,感測器可以偵測人體的肌肉收縮、特定的癌症相關蛋白質、電訊號等,並可運用於穿戴式裝置。
利用導電微針的生物感測器。 傳統的針頭會造成病人的疼痛,而最新的microneedle技術則是將針頭做成類似蚊子的吸血口器的大小,因此對於藥物注射與藥物釋放是一大突破 。除了藥物釋放,導電材料所作成的微針也可用於電刺激皮膚。
Sensors based on nano-membranes
Nanomaterials (MXene) for green electronics and biosensors
利用導電奈米材料,加上纖維素,可以合成導電奈米纖維紙,並用於各種生物感測器、穿戴裝置。
Sensors based on aerogels
Nanomaterials (MXene) for green electronics and biosensors
利用冰晶當作模板製作類似海綿的導電氣凝膠,可以製作壓力感測器
Sensors based on semiconductors
應力所系館有尖端無塵室設備,因此本實驗室正在研究ISFET的感測器與相關應用
An ion-sensitive field-effect transistor (ISFET) is a field-effect transistor used for measuring ion concentrations in solution; when the ion concentration (such as H+, see pH scale) changes, the current through the transistor will change accordingly.
EMG Sensor Development
肌肉電訊號的量測系統
表面肌電訊號(Surface electromyography, sEMG) 是放大皮膚表面神經肌肉系統的生物電變化而獲得的一維時間序列訊號。與傳統的侵入式肌電訊號(Electromyography,EMG) 相比,具有無創的優勢。基於此特點,sEMG 信號在可穿戴設備領域具有很好的應用前景,藉此達到體外模擬吞嚥障礙病人的運動異常,使病人不需要反覆接受內視鏡、冒著嗆咳風險做吞嚥測試。
For more information, please click here....
Previous Research: Scanning Probe System Based on Soft Microelectrode
先前的研究:利用軟性微電極探針之掃瞄系統
掃描式探針(scanning probe)是利用物理探針,對物體表面進行掃描的一種系統,最著名的包含了原子力顯微鏡(AFM),以及掃描式電化學顯微鏡(SECM)等。台灣學界專注在掃描探針系統的學者們相當優秀也很辛苦,因為此類系統儀器價格相當昂貴,通常為上百萬甚至千萬,技術操作門檻相當高,探針又為昂貴消耗品,每年儀器維護費至少要十幾萬以上,林子恩老師亦是台灣少數鑽研此類系統的學者之一。就SECM而言,傳統的探針有許多缺點,例如易碎且為微米等級,操作極為困難,如何控制樣品與探針的距離,更是難上加難。因此,要應用到現實世界中,就更加困難了,更遑論進行藥物釋放、掃描真實世界的樣品。為了克服此問題,林子恩老師在國外與指導教授針對儀器改良與偵測樣品的部分做了許多研究,也有相當的成果。回台灣後,有鑑於台灣的AI人才相當優秀且數量多,林老師和學生們開發出可以利用AI來優化成項系統的方法。另外,林老師和同學們也在探針上進行改良,讓探針可以進行藥物遞送,並和台大醫院、清大合作,對真實世界的病人樣品進行細菌偵測與藥物遞送,並可在豬眼球上進行細菌偵測與藥物遞送。此研究已發表在Sensors and Actuators B: Chemical上,此期刊在儀器領域排名第一(INSTRUMENTS & INSTRUMENTATION 1/76 )。Crossref.
International Collaborators
Acknowledgments