Search this site
Embedded Files
SMART_HSE
  • Home
  • HSE BULLETINS
  • HSE NEWS
  • OIL&GAS OPERATIONS
    • Production Operations
      • MULTISTAGE CENTRIFUGAL COMPRESSORS
      • Cavitation Process
      • P&IDs
      • Steam Turbine
      • Boiler
      • Pumps
      • Heat Exchanger
      • Flare System
      • HVAC System
      • PLC Programming Tutorial
      • SCADA System
      • Types of Valve used in Piping
      • Breathing Valve
      • Subsea Welding
      • Deaerator
      • Ductwork sizing
      • Time-of-Flight measuring principle
      • Vortex Flow Meter
      • The Electromagnetic Flow Measuring Principle
      • The Differential Pressure Flow Measuring Principle (Orifice-Nozzle-Venturi)
      • Differential pressure level transmitter - Endress + Hauser Continuous le
      • Ultrasonic Level Transmitter
      • The Coriolis Flow Measuring Principle
      • Turbidity measurement
      • Dissolved oxygen measurement
      • Potentiometric pH measurement
      • Gas Turbines - Combined Cycle
      • Steam Trap
      • Pneumatic Cylinder
    • Well Operations
      • Well Operations Safety Videos
      • IWCF Training Course
      • Deep Water Drilling
    • Reservoir Management
      • Reservoir Engineering
      • Natural Gas
  • SAFETY VIDEO (Safety Moments)
    • 1. Near Miss, Unsafe Act, Unsafe Conditions
    • 2. Line Of Fire
    • 3. Work at Height
    • 4. Confined Space
    • 5. Lifting Operations
    • 6. Electrical Safety
    • 7. Permit To Work System PTW
    • 8. Fire Safety
    • 9. Excavation Safety
    • 10. Road Traffic Safety
    • 11. Toxic Gas
    • 12. Process Safety
    • 13. Welding Operations
    • 14. Videos of Accidents
    • 15. Ramadan
    • 16. Other Safety Videos
    • -> YouTube HSE Channels
  • ENVIRONMENTAL VIDEO (Moments)
    • 1. Water Management
    • 2. Waste Management
    • 3. Gas Flaring
  • HSE MANAGEMENT SYSTEM
    • ISO 9001
    • ISO 14001
    • ISO 39001
    • ISO 45001 (OHSAS 18001)
    • 1. Risk Management
    • 2. HSE Management in Oil & Gas Industry
    • 3. Health Management
    • 4. Contractor Management
  • EAST WIND
    • Life Saving Rules Program
    • Contract Management
    • Environmental Management
    • Safety Competence Assessment
    • My Personal Commitment
    • Dropped Object Prevention
    • Process Safety
    • Defensive Driving Training
    • Well Operation Inspection Program
    • KPI for Well Ops
    • Five Stars Campaign
    • Booklets for CoW and LSR
    • Hand Working Safety Campaign
    • Inside Lesson Learnt
    • The 7 Hazardous Energies
    • No Crushing, Line of Fire
    • Hazard Identification Program
    • Reporting
    • HSE Walkthrough Site Visit Report
    • HSE IMS Alignment
    • SIMOPS
    • Digitalization
    • Safety Communication
    • Awareness 3.0
  • SMART_HSE DRIVE
    • 00. COVID_19
    • 0. IOGP STATISTICS & REPORT
    • 1. TRAINING & AWARENESS
    • 2. HSE ALERT
    • 3. SAFETY MOMENTS
    • 4. LESSON LEARNT
    • 5. LIFTING OPERATIONS
    • 6. DROPPED OBJECT
    • 7. BOOKLETS
  • HSE WEBINAR & MAIN EVENTS
  • SAFETY VIDEO INDUCTION
  • LESSON LEARNT
  • HSE ALERT & OTHERS WEBSITE
  • WEATHER FORECAST
  • Oil & Gas Companies
SMART_HSE

Ultrasonic Level Transmitter

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

In a similar way to radar and sonar, ultrasonic transducers are used in systems which evaluate targets by interpreting the reflected signals. For example, by measuring the time between sending a signal and receiving an echo the distance of an object can be calculated. Passive ultrasonic sensors are basically microphones that detect ultrasonic noise that is present under certain conditions.

The design of transducer can vary greatly depending on its use: those used for medical diagnostic purposes, for example the range-finding applications listed above, are generally lower power than those used for the purpose of changing the properties of the liquid medium, or targets immersed in the liquid medium, through chemical, biological or physical (e.g. erosive) effects. The latter class include ultrasonic probes and ultrasonic baths, which apply ultrasonic energy to agitate particles, clean, erode, or disrupt biological cells, in a wide range of materials; See Sonication.

Applications and performance

Ultrasound can be used for measuring wind speed and direction (anemometer), tank or channel fluid level, and speed through air or water. For measuring speed or direction, a device uses multiple detectors and calculates the speed from the relative distances to particulates in the air or water. To measure tank or channel liquid level, and also sea level (tide gauge), the sensor measures the distance (ranging) to the surface of the fluid. Further applications include: humidifiers, sonar, medical ultrasonography, burglar alarms, non-destructive testing and wireless charging.

Systems typically use a transducer which generates sound waves in the ultrasonic range, above 18 kHz, by turning electrical energy into sound, then upon receiving the echo turn the sound waves into electrical energy which can be measured and displayed.

This technology, as well, can detect approaching objects and track their positions.

Ultrasound can also be used to make point-to-point distance measurements by transmitting and receiving discrete bursts of ultrasound between transducers. This technique is known as Sonomicrometry where the transit-time of the ultrasound signal is measured electronically (ie digitally) and converted mathematically to the distance between transducers assuming the speed of sound of the medium between the transducers is known. This method can be very precise in terms of temporal and spatial resolution because the time-of-flight measurement can be derived from tracking the same incident (received) waveform either by reference level or zero crossing. This enables the measurement resolution to far exceed the wavelength of the sound frequency generated by the transducers.

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse